Некоторые особенности решения систем уравнений методом Гаусса
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

1) Допустим, 1-й элемент в следующей строке не кратен угловому элементу, например:

Вообще, можно отнять от 2-й строки 1-ю, домноженную на 5/3. Однако чтобы избежать вычислений с дробями, можно сначала умножить всю 2-ю строку на 3, получится  и затем уже можно работать только с целыми коэффициентами.

2) Если угловой элемент основной матрицы уже 0, то есть нет  в первом уравнении. Тогда вычитание 1-й строки из других строк не изменит элементы ниже углового  и не позволит приводить матрицу системы к треугольному виду в итоге. Однако проблема решается элементарно: сначала нужно поменять местами 1-е уравнение с каким-то из следующих, где есть элемент . Желательно с тем, где оно с коэффициентом, равным 1, чтобы затем вычитать только строки, кратные первой. Таким образом, метод Гаусса очень устойчив, и может выполняться, даже когда в матрице угловой элемент был 0.

 

Задача 53. Решить систему уравнений   

Решение. Построим расширенную матрицу и преобразуем её. 

чтобы обнулились коэффициенты ниже левого верхнего угла, то есть чтобы исчезла переменная  из всех уравнений кроме первого, надо:

а) из 2-й строки вычесть 1-ю;

б) из 3-й строки вычесть удвоенную 1-ю.

=

Теперь, чтобы обнулить ниже чем , нужно к 3-й строке просто прибавить 2-ю, так как знаки там противоположны. При этом структуру из нулей, которые уже получились слева, мы на последующем шаге всё равно никак не испортим, ведь там к 0 будет прибавляться 0 либо вычитаться 0, то есть ступенчатая структура там уже всё равно будет сохраняться. 

 =

Когда в основной матрице уже получена треугольная структура, снова перепишем в виде системы

В первом уравнении 3 неизвестных, а в каждом следующем всё меньше и меньше, а в последнем вообще только одна неизвестная. Именно этой цели мы и хотели добиться, приводя к треугольному виду: из последнего уравнения можно теперь сразу выразить . Затем с этой информацией мы поднимаемся в предпоследнее уравнение, где две неизвестных, впрочем, одна из них уже известна.

.

А теперь уже две последних неизвестных стали известны, и с этой информацией поднимаемся в 1-е уравнение, подставляя туда  и . Итак, .

Ответ. =2, =1, =1.   

Можно ответ записать и в виде вектора: .

 

Задача Д-16. Решить систему уравнений   

Решение. Во-первых, можно всё 2-е уравнение сократить на 2, так удобнее для решения, числа будут меньше. Затем обнуляем ниже углового элемента: вычитаем из 2-го уравнения удвоенное 1-е, а также 3-го 1-е.

 =

 треугольная структура уже получилась.

Перепишем снова в виде системы:

из 3-го уравнения , подставляем во 2-е, там получается .

А из 1-го .

Ответ. , , .

Задача 54. Решить систему уравнений   

Решение.

При построении расширенной матрицы, сразу же домножим 2-е и 3-е уравнения на такие коэффициенты, чтобы в начале строки были числа, кратные угловому элементу. А именно, 2-ю строку на 2, а 3-ю строку на 4. Так надо, чтобы потом в методе Гаусса можно было не домножать на дробные коэффициенты при вычитании строк.

Теперь вычтем из 2-й строки 1-ю, домноженную на 3,

а из 3-й строки 1-ю, домноженную на 5.

=

Если теперь поменять местами 2 и 3 строки, получится:

 система:

И хотя матрица не выглядит как матрица треугольного вида, тем не менее, основная идея метода Гаусса уже реализована: чем ниже, тем меньше переменных, а в последнем уравнении всего одна, а именно . Здесь тоже можно последовательно выразить все переменные, просто начинаем не с последней, а в другом порядке. К треугольному виду в этом случае можно до конца и не приводить.

Итак, из третьего: , то есть .

Подставляем во второе уравнение. , т.е. , .

Из первого: , откуда , .

Ответ. , , .

 

Дата: 2019-02-02, просмотров: 239.