Любое комплексное число (кроме нуля) можно записать в тригонометрической форме:
, где
– это модуль комплексного числа, а
– аргумент комплексного числа. Изобразим на комплексной плоскости число
. Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что
:
Напоминаю, модулем комплексного числа называется расстояние от начала координат до соответствующей точки комплексной плоскости.
Модуль комплексного числа стандартно обозначают:
или
По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: . Данная формула справедлива для любых значений «а» и «бэ».
Аргументом комплексного числа называется угол
между положительной полуосью действительной оси
и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа:
.
Аргумент комплексного числа стандартно обозначают:
или
Из геометрических соображений получается следующая формула для нахождения аргумента:
. Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-ой и не 4-ой координатной четверти, то формула будет немного другой. Эти случаи мы тоже разберем.
Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях.
Пример 1
Представить в тригонометрической форме комплексные числа: ,
,
,
.
На самом деле задание устное. Для наглядности перепишу тригонометрическую форму комплексного числа:
Запомним намертво, модуль – длина (которая всегда неотрицательна), аргумент – угол.
1) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что
. Формальный расчет по формуле:
.
Очевидно, что (число лежит непосредственно на действительной положительной полуоси). Таким образом, число в тригонометрической форме:
.
Ясно, как день, обратное проверочное действие:
2) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что
. Формальный расчет по формуле:
.
Очевидно, что (или 90 градусов). На чертеже угол обозначен красным цветом. Таким образом, число в тригонометрической форме:
.
Используя таблицу значений тригонометрических функций, легко обратно получить алгебраическую форму числа (заодно выполнив проверку):
3) Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что
. Формальный расчет по формуле:
.
Очевидно, что (или 180 градусов). На чертеже угол обозначен синим цветом. Таким образом, число в тригонометрической форме:
.
Проверка:
4) И четвёртый интересный случай. Представим в тригонометрической форме число . Найдем его модуль и аргумент. Очевидно, что
. Формальный расчет по формуле:
.
Аргумент можно записать двумя способами: Первый способ: (270 градусов), и, соответственно:
. Проверка:
18.2 ДЕЙСТВИЯ С КОМПЛЕКСНЫМИ ЧИСЛАМИ В ТРИГОНОМЕТРИЧЕСКОЙ ФОРМЕ
Частное комплексных чисел
Дата: 2019-07-31, просмотров: 317.