Опишите основные системы «вектор-хозяин» у прокариот, основные свойства векторов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Под понятием "вектор" понимается молекула нуклеиновой кислоты, способная после введения в клетку к автономному существованию за счет наличия в ней сигналов репликации и транскрипции.

Векторные молекулы должны обладать следующими свой­ствами:

1) способностью автономно реплицироваться в клетке-реципиенте, то есть быть самостоятельным репликоном;

2) содержать один или несколько маркерных генов, благодаря экспрессии которых у клетки-реципиента появляются новые призна­ки, позволяющие отличить трансформированные клетки от исходных;

3) содержать по одному или, самое большее, по два участка (сайта) для различных рестриктаз в разных районах (в том числе в составе маркерных генов), но не в области, ответственной за их репликацию.

Структурные особенности вектора, необходимые для успешной экспрессии вводимого гена:

1) кодирующая последовательность чужеродного гена непрерывна;

2) ген находится под контролем промотора, который узнается РНК-полимеразой E. coli; Промотор (promoter) – участок ДНК, который инициирует транскрипцию гена. Находится на смысловой цепи рядом с геном . Промотор организует сайт прикрепления РНК-полимеразы и специальных белков – факторов транскрипции.Направление цепи «по течению» (downstream) - от 5' к 3'-концу, «против течения» (upstream) - от 3' к 5’ концу.

3) мРНК, считываемая с гена, правильно транслируется белок-синтезирующим аппаратом E. coli.

В зависимости от целей эксперимента векторы можно условно разделить на две группы: 1) используемые для клонирования и амплификации нужного гена; 2) специализированные, применяемые для экспрессии встроенных чужеродных генов. Вторая группа векторов объединяет векторы, призванные обеспечить синтез белковых продуктов клонированных генов. Векторы для экспрессии содержат последовательности ДНК, которые необходимы для транскрипции клонированных копий генов и трансляции их мРНК в штаммах клеток. В качестве прокариотических векторов используются плазмиды, бактериофаги. Плазмиды - это внехромосомные генетические элементы про- и эукариот, которые автономно реплицируются в клетках. Большинство плазмидных векторов получено на основе природных плазмид ColE1, pMB1 и p15A.

Бактериальные плазмиды делят на два класса. Одни плазмиды (например, хорошо изученный фактор F, определяющий пол у E.coli) сами способны переходить из клетки в клетку, другие такой способно­стью не обладают. По ряду причин, и прежде всего для предотвращения неконтролируемого распространения потенциально опасного генетического материала, подавляющее большинство бактериальных плазмидных векторов создано на базе плазмид второго класса. Многие при­родные плазмиды уже содержат гены, определяющие устойчивость клеток к антибиотикам (продукты этих генов - ферменты, модифици­рующие или расщепляющие антибиотические вещества). Кроме того, в эти плазмиды при конструировании векторов вводятся дополнитель­ные гены, определяющие устойчивость к другим антибиотикам. В настоящее время наряду с множеством удобных векторных систем для E.coli сконструированы плазмидные векторы для ряда дру­гих грамотрицательных бактерий (в том числе таких промышленно важных, как Pseudomonas, Rhizobium и Azotobacter), грамположительных бактерий (Bacillus), низших грибов (дрожжи) и растений.

Среди фаговых векторов наиболее удобные системы были созда­ны на базе геномов бактериофагов l и М13 E.coli. ДНК этих фагов содержит протяженные области, которые можно делегировать или за­менить на чужеродную ДНК, не затрагивая их способности реплицироваться в клетках E.coli. При конструировании семейства векторов на базе ДНК l фага из нее сначала (путем делений коротких участков ДНК) были удалены многие сайты рестрикции из области, не сущест­венной для репликации ДНК, и оставлены такие сайты в области, предназначенной для встраивания чужеродной ДНК. В эту же область часто встраивают маркерные гены, позволяющие отличить рекомбинантную ДНК от исходного вектора. Такие векторы широко использу­ются для получения "библиотек генов". Раз­меры замещаемого фрагмента фаговой ДНК и соответственно встраи­ваемого участка чужеродной ДНК ограничены 15-17 тыс. нуклеотидных остатков, так как рекомбинантный фагоый геном, который на 10% больше или на 75% меньше генома дикого l фага, уже не может быть упакован в фаговые частицы.

Таких ограничений теоретически не существует для векторов, сконструированных на базе нитчатого бактериофага М13. Описаны случаи, когда в геном этого фага была встроена чужеродная ДНК длиной около 40 тыс. нуклеотидных остатков. Известно, однако, что фаг М13 становится нестабильным, когда длина чужеродной ДНК пре­вышает 5 тыс. нуклеотидных остатков. Фактически же векторы, полу­ченные из ДНК фага М13, используются главным образом для секвенирования и мутагенеза генов, и размеры встраиваемых в них фрагментов намного меньше.

Эти векторы конструируются из реплекативной (двутяжевой) формы ДНК фага М13, в которую встроены "полилинкерные" участки (пример такой конструкции показан на рис. 2). В фаговую частицу ДНК включается в виде однотяжевой молекулы. Таким образом, этот вектор позволяет получать клонированный ген или его фрагмент как в двутяжевой, так и в однотяжевой форме. Однотяжевые формы рекомбинантных ДНК широко используются в настоящее время при опреде­лении нуклеотидной последовательности ДНК методом Сэнгера и для олигодезоксинуклеотид-направленного мутагенеза генов.

 

Дата: 2019-05-28, просмотров: 323.