Знать/понимать
· значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
· значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
· идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
· значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
· универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
· различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
· вероятностных характер различных процессов и закономерностей окружающего мира.
Числовые и буквенные выражения
Уметь:
· выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
· применять понятия, связанные с делимостью целых чисел, при решении математических задач;
· находить корни многочленов с одной переменной, раскладывать многочлены на множители;
· проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
· практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.
Функции и графики
Уметь
· определять значение функции по значению аргумента при различных способах задания функции;
· строить графики изученных функций, выполнять преобразования графиков;
· описывать по графику и по формуле поведение и свойства функций;
· решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
· описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.
Начала математического анализа
Уметь
находить сумму бесконечно убывающей геометрический прогрессии;
Уравнения и неравенства
Уметь
· решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;
· доказывать несложные неравенства;
· решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;
· изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
· находить приближенные решения уравнений и их систем, используя графический метод;
· решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
· построения и исследования простейших математических моделей.
Дата: 2019-02-25, просмотров: 195.