Частотные характеристики описывают установившиеся вынужденные колебания на выходе звена, вызванные гармоническим воздействием на входе.

Рис. 24. Экспериментальное определение частотных характеристик объекта.
Пусть на вход звена подано гармоническое воздействие:
, где
– амплитуда, а
– угловая частота этого воздействия.
По окончании переходного процесса на выходе звена будут существовать гармонические колебания с той же частотой, что и входные колебания, но отличающиеся в общем случае по амплитуде и вазе, т.е. в установившемся режиме выходная величина звена будет:
, где
– амплитуда выходных установившихся колебаний,
– фазовый сдвиг между входными и выходными колебаниями.
Степень различия между параметрами входных и выходных гармонических сигналов не зависит от амплитуды и фазы входного сигнала, а определяется только динамическими свойствами самого объекта и частотой колебаний.
Поэтому в качестве динамических характеристик объекта могут быть использованы следующие частотные характеристики:
Амплитудно-частотная характеристика (АЧХ) –
;
Фазо-частотная характеристика (ФЧХ) –
;
Амплитудно-фазовая характеристика (АФХ) –
, определяемые по формулам:
- зависимость отношения амплитуды гармонических колебаний на выходе элемента к амплитуде на его входе от частоты.
- зависимость изменения фазы выходного гармонического колебания по отношению к фазе входного колебания от частоты.
- комплексная функция, для которой АЧХ является модулем, а ФЧХ – аргументом.
Частотные характеристики элемента можно определить экспериментально, подавая на его вход синусоидальный сигнал с различной частотой и регистрируя параметры синусоид на выходе (рис. 24). Можно определить частотные характеристики и по другим динамическим характеристикам элемента, в частности, по его передаточной функции.
Как указывалось выше, оператор
, который является аргументом функции
, представляет собой комплексное число и может быть представлен в виде
, где
– вещественная часть
;
– мнимая часть
.
Оператор
может принимать любые значения, т.е. может быть и чисто мнимой величиной. Возьмем значение
и, подставив его в выражение для передаточной функции
, получим функцию комплексного переменного
:
– т.е. АФХ. Как функция комплексного переменного,
может быть представлена двояко: в полярных координатах
и
или в прямоугольных координатах
и
:
, где
и
– действительная и мнимая части
.
,
,
и
связаны между собой следующими соотношениями:

|
| Рис. 25. Пример построения годографа АФХ. |
АФХ
строится в плоскости комплексного переменного и представляет собой годограф вектора, модуль и аргумент которого
и
изменяются в зависимости от частоты (рис. 25).
Пример:
Требуется построить частотные характеристики объекта, передаточная функция которого имеет вид: 
Заменив в
на
, получим выражение для АФХ:

Модуль и аргумент для
найдем по формулам:


а) б) в)
Рис. 26. Пример построения частотных характеристик а) – АЧХ; б) – ФЧХ; в) – АФХ.
2.8.2. Логарифмические частотные характеристики:
В ТАУ широко используются логарифмические частотные характеристики ЛЧХ: логарифмическая амплитудная ЧХ (ЛАЧХ)
и логарифмическая фазовая ЧХ (ЛФЧХ)
. Они получаются путем логарифмирования передаточной функции:

На практике удобнее пользоваться десятичными логарифмами:

ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, т.е.
. Величина
откладывается по оси ординат в децибелах. Изменение уровня сигнала на 10 дБ соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала
пропорциональна квадрату его амплитуды
, то изменение сигнала в 10 раз соответствует изменение его уровня на 20 дБ, так как

По оси абсцисс откладывается частота ω в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение
в 10 раз. Такой интервал называется декадой. Так как
, то ось ординат проводят произвольно.
ЛФЧХ отличается от ФЧХ только масштабом по оси
. Величина
откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы интервала
.
Дата: 2019-02-19, просмотров: 418.