Функции MS Excel для вычисления мер центральной тенденции
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Мода

Для нахождения моды в старых версиях Excel существовала функция МОДА, но в более поздних она была разбита на две:

1) МОДА.ОДН (для отдельных чисел);

2) МОДА.НСК(для массивов).

=МОДА.ОДН(число1;число2;…)

=МОДА.НСК(число1;число2;…)

Медиана

Для вычисления медианы применяется функция МЕДИАНА, которая устанавливает не среднее арифметическое, а просто среднюю величину между наибольшим и наименьшим числом области значений. Синтаксис выглядит так:

=МЕДИАНА(число1;число2;…)

Среднее

Для определения среднего значения используется функция СРЗНАЧ, которая ищет число в указанном диапазоне, ближе всего находящееся к среднему арифметическому значению. Результат этого расчета выводится в отдельную ячейку, в которой и содержится формула. Шаблон у неё следующий:

=СРЗНАЧ(число1;число2;…)

Функции MS Excel для вычисления мер рассеяния

Дисперсия

В MS Excel 2007 и более ранних версиях для вычисления дисперсии выборки используется функция ДИСП(). С версии MS Excel 2010 рекомендуется использовать ее аналог ДИСП.В(). Кроме того, начиная с версии MS Excel 2010 присутствует функция ДИСП.Г(), которая вычисляет дисперсию для генеральной совокупности. До MS Excel 2010 для вычисления дисперсии генеральной совокупности использовалась функция ДИСПР().

Отличие в вычислении выборочной и генеральной совокупности сводится к знаменателю в формулах (4.2) и (4.4).

Стандартное отклонение

В Excel используются несколько вариантов этой функции отклонения:

§ Функция СТАНДОТКЛОНА – вычисляется отклонение по выборке текстовых и логических значений. При этом ложные логические и текстовые значения формула приравнивает к 0, а 1 будут равняться только истинные логические значения;

§ Функция СТАНДОТКЛОН.В – производит оценку стандартного отклонения по выборке, при этом текстовые и логические значения игнорирует;

§ Функция СТАНДОТКЛОН.Г – делает оценку отклонения по некой генеральной совокупности и как в предыдущей функции игнорируются текстовые и логические значения;

§ Функция СТАНДОТКЛОНПА – также вычисляет по генеральной совокупности стандартное отклонение, но с учетом текстовых и логических значений. Равняться 1 будут только истинные логические значения, а ложные логические и текстовые значения будут приравнены к 0.

Коэффициент вариации

Для расчета коэффициента вариации в Excel нет готовой функции. Однако, расчет можно произвести простым делением стандартного отклонения на среднее значение. Для этого в строке формул пишем:

=СТАНДОТКЛОН.Г()/СРЗНАЧ()

В скобках указывается диапазон данных. При необходимости используют среднее квадратичное отклонение по выборке (СТАНДОТКЛОН.В).

Коэффициент вариации обычно выражается в процентах, поэтому ячейку с формулой можно обрамить процентным форматом. Нужная кнопка находится на ленте на вкладке «Главная».

 

Задача 4.2. У студентов первого и второго курса был исследован уровень депрессивного расстройства по методике Бэка. Сделать сравнительный анализ, используя методы описательной статистики. Результаты тестирования даны в таблице 4.2.

Таблица 4.2

1 курс

2 курс

30

24

27

17

23

17

22

17

19

17

19

14

18

14

16

13

15

12

14

12

13

11

12

11

12

8

12

8

10

7

10

7

10

4

10

0

 

1. С помощью статистических функций MS Excel найдем оценку центральной тенденции:

Таблица 4.3

 

1 курс

2 курс

мода

10

17

медиана

14,5

12

среднее

16,2

11,8

 

Медиана и среднее арифметическое значение на первом курсе выше, чем на втором, из чего можно сделать вывод, что уровень депрессивного расстройства на 1 курсе превышает уровень расстройства на втором курсе. Однако мода на 2-ом курсе значительно выше, чем на первом, т.е. преобладают более высокие значения уровня депрессивного расстройства.

2. Произведем оценку разброса данных:

Таблица 4.4

 

1 курс

2 курс

дисперсия

37,0

32,0

ст. отклонение

6,1

5,7

коэффициент вариации

37,5%

47,8%

 

Коэффициент вариации и на 1-ом курсе и на 2-ом выше 33%, что говорит о неоднородности данных в этих группах. Однако, дисперсия и стандартное отклонение на 1-ом курсе выше, чем на 2-ом, что говорит о более широком разбросе данных и следовательно, можно сделать вывод о том, что вторая выборка более однородна.

 

Дата: 2018-11-18, просмотров: 446.