Л.И. Мандельштам и отрицательное преломление света
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Недавнее наблюдение отрицательного преломления в области микроволн [14] и теоретическое предсказание возможности так называемой идеальной ("perfect") фокусировки света [15] привело к повышенному интересу к материалам с отрицательным преломлением. На эту тему опубликовано множество статей в научных и популярных журналах и даже в газетах. Причем очень часто отправным пунктом в развитии исследований отрицательного преломления света считается упоминавшаяся выше работа Веселаго 1968 года [10]. В действительности, как уже отмечалось во введении, история отрицательного преломления света началась значительно раньше - глубокое понимание сути этого явления было достигнуто Л.И. Мандельштамом по меньшей мере в 1940 г., а в статье Веселаго просто отсутствовали ссылки на ранее проведенные исследования.

Основоположник выдающейся Московской физической школы (см., например, [16]) Л.И. Мандельштам прочитал в Московском государственном университете несколько неформальных циклов лекций. Эти лекции, начавшиеся в 1930 г., продолжались многие годы. На лекциях, которые славились глубоким проникновением в суть обсуждаемого предмета, рассматривались многие важные и тонкие вопросы оптики, теории относительности и квантовой механики. Их посещали не только студенты, но и многие уважаемые профессора. Благодаря записям, сделанным сотрудниками Мандельштама СМ. Рытовым и М.А. Леонтовичем, эти лекции сохранились и вошли в Полное собрание трудов Мандельштама, а значительно позже были опубликованы отдельно [3].

На одной из лекций 1944 года Мандельштам дал детальный анализ отрицательного преломления, происходящего на плоской границе раздела двух сред, в одной из которых могут распространяться волны с отрицательной групповой скоростью. Ниже мы приводим отрывок из лекции Мандельштама. После обсуждения условий, при которых групповая скорость представляет собой скорость распространения энергии, Мандельштам продолжает:

"Пусть все эти условия выполнены, и, следовательно, энергия перемещается с групповой скоростью. Но мы знаем, что групповая скорость может быть отрицательна. Это означает, что группа (и энергия) движется в сторону, противоположную направлению распространения фазы волны. Возможны ли такие случаи в действительности?

В 1904 г. Лэмб придумал некоторые искусственные механические модели одномерных "сред", в которых групповая скорость может быть отрицательной. Сам он, по-видимому, не считал, что приведенные им примеры могут иметь физические применения. Но, как оказывается, существуют и вполне реальные среды, в которых для некоторых областей частот фазовая и групповая скорости действительно направлены навстречу друг другу. Это получается в так называемых "оптических" ветвях акустического спектра кристаллической решетки, рассмотренных М. Борном. Возможность подобного явления позволяет с несколько иной точки зрения подойти и к таким, казалось бы, хорошо известным вещам, как отражение и преломление плоской волны на плоскости раздела между двумя непоглощаю-щими средами. Протекание этого явления, при разборе которого о групповой скорости обычно вообще не упоминают, существенно зависит от ее знака.

Действительно, в чем заключается идея вывода формул Френеля?

Рассматривают плоскую синусоидальную волну, падающую под углом ц, на плоскость раздела у = 0,

 


и наряду с ней еще две волны – отраженную и преломленную

 

На плоскости у = 0 эти волны должны удовлетворять так называемым граничным условиям. Для упругих тел это условие непрерывности напряжений и смещений по обе стороны от границы. В электромагнитной задаче на плоскости раздела должны быть непрерывны тангенциальные составляющие напряженностей и нормальная составляющая индукций. Легко показать, что с одной только отраженной волной (или только с преломленной) этим граничным условиям удовлетворить нельзя. Наоборот, при наличии обеих волн условия всегда могут быть выполнены. Отсюда, между прочим, вовсе не следует, что должны быть только три волны, а не больше: граничные условия допускают наличие еще одной, четвертой волны, идущей под углом я - ъ во второй среде. Обычно молча принимают, что этой волны нет, т.е. постулируют, что во второй среде распространяется только одна волна.

Из граничных условий тотчас же следует закон отражения и закон преломления

     
 

 

Однако последнее равенство удовлетворяется как при угле ∆φ1 так и при угле π - φ1 Волна во второй среде, соответствующая φ1 распространяется по направлению от границы раздела (рис. 2, слева). Волна же, соответствующая π - φ1 распространяется по направлению к границе раздела (рис. 2, справа). Считается само собой понятным, что второй волны быть не может, так как свет падает из первой среды на вторую, а значит, во второй среде энергия должна оттекать от границы раздела. Но причем здесь энергия? Ведь направление распространения волны определяется ее фазовой Если же имеем случай отрицательной группоскоростью, энергия же перемещается с групповой скоростью. Здесь допускается, таким образом, логический скачок, которого не чувствуют лишь потому, что привыкли к совпадению направлений распространения энергии и фазы. Если такое совпадение имеет

 

место, т.е. если групповая скорость положительна, то тогда все получается правильно.

 

Рис. 2. Отражение и преломление падающей плоской волны. (Рисунок из лекций Мандельштама [1, 3].)

 

вой скорости - случай, как я уже говорил, вполне реальный, - то все меняется. Требуя по-прежнему, чтобы энергия во второй среде оттекала от границы раздела, мы приходим тогда к тому, что фаза должна набегать на эту границу и, следовательно, направление распространения преломленной волны будет составлять с нормалью угол π - φ1 [как показано на рисунке 2 справа]. Как ни непривычно такое построение, но, конечно, ничего удивительного в нем нет, ибо фазовая скорость еще ничего не говорит о направлении потока энергии".

Эти замечания, сделанные Мандельштамом более шестидесяти лет назад, в действительности объясняют физическую причину возникновения отрицательного преломления и его природу. Поучительно, что, говоря о природе отрицательного преломления, Мандельштам оперирует терминами "волновой вектор", "групповая скорость" и "принцип причинности", а не термином "отрицательный коэффициент преломления", так популярным сегодня. Из принципа причинности следует, что в среде, находящейся в термодинамическом равновесии, интенсивность волны, распространяющейся от границы раздела, должна уменьшаться. Это правило определяет знак мнимой части коэффициента преломления, а следовательно, и знак его действительной части, поскольку они взаимосвязаны и определяются знаком в следующем из (3) уравнении n(ω) = ε(ω)µ(ω).

Установленная Мандельштамом  связь между отрицательным преломлением и отрицательной групповой скоростью ясно показывает, что отрицательное преломление возможно для волн любой природы, а также указывает на возможность отыскания подходящих для наблюдения отрицательного преломления материалов на основе изучения дисперсии ω( k ) тех волн, которые могут в них распространяться. Краткий обзор истории вопроса об отрицательной групповой скорости можно найти также в недавней работе [17], где эта история прослеживается вплоть до таких ранних работ, как работы Лэмба [18] и фон Лауэ [19].

Тот факт, что понятие групповой скорости чрезвычайно важно в оптике кристаллов, подробно обсуждается в монографии [7]. Отрицательное преломление, возникающее на границе раздела с гиротропной средой, рассматривается уже в первом издании этой книги 1966 года и сопровождается так хорошо известным теперь рис. 2 (см. [7, с. 264]).




Излучение Черенкова

В тех средах, в которых распространяются волны с отрицательной групповой скоростью, излучение Черенкова имеет ряд особенностей. Эти особенности также уже давно известны. Из теории излучения Черенкова (см., например, [6]) легко получить, учитывая знак групповой скорости, "необычное" направление распространения излучения. Пусть заряженная частица движется в прозрачной среде вдоль оси х со скоростью v. В результате среда может излучать электромагнитные волны с частотой ω и волновым вектором к, такими, что ω = kxv . С другой стороны, волновой вектор и частота связаны соотношением k = nω / c , где n= ε- коэффициент преломления. Поскольку k > kx , должно выполняться соотношение v > vph = с/ n (ω), т.е. излучение волн с частотой со возможно, если скорость частицы превышает фазовую скорость vph .

 

 

Рис. 3. Иллюстрация к направлению излучения Черенкова в среде с положительной (а) и отрицательной (б) групповой скоростью.

 

Здесь v - направление скорости частицы, к - направление волнового вектора излучения, a S - направление вектора Пойнтинга. Вектор S направлен вдоль групповой скорости vg и определяет действительное направление излучения.

Если обозначить через θ угол между направлением движения частицы и волновым вектором излучения к, то легко видеть, что

 

 

Приведем цитату из [6]: "...излучение каждой частоты происходит вперед по направлению движения частицы и распределяется по поверхности конуса с углом раствора в, определяемым формулой (7)".

Из логики приведенного вывода ясно, что заключение о направлении излучения основано на неявном предположении о том, что отвечающая волновому вектору к групповая скорость vg положительна, а значит, направлена по к - ситуация, показанная на рис. За. Если же групповая скорость, наоборот, отрицательна, т.е. vg направлена в сторону, противоположную к, то направление излучения (поток энергии S) будет иметь противоположную ориентацию. В этом случае направление излучения образует тупой угол с направлением движения частицы, что впервые было отмечено Пафомовым [13]. На рисунке 36 изображено излучение Черенкова, направленное назад. Излучение распределено по поверхности конуса с тем же углом раствора.

В дальнейшем будет показано, что волны с отрицательной групповой скоростью могут возникать в кристаллах благодаря наличию пространственной дисперсии. В монографии [7, с. 405,406] обсуждаются различные случаи проявления пространственной дисперсии в излучении Черенкова. Особенно интересные эффекты как в гиротропных [7, 20], так и в негиротропных [7] средах возникают в окрестности экситонных резонансов: при возрастании скорости движущейся частицы направление конуса Черенкова изменяется от направления излучения вперед до направления излучения назад.

Интересно также влияние, оказываемое отрицательной групповой скоростью на переходное излучение заряженной частицы, проходящей через границу между двумя средами с разными диэлектрическими проницае-мостями. Важная роль знака групповой скорости для переходного излучения и особенности "обратного" эффекта Доплера впервые были изучены в работах Франка [21], Барсукова [22] и Пафомова [12].

 




Дата: 2019-12-22, просмотров: 256.