Магнитная восприимчивость на оптических частотах
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Мы уже обсуждали в разделах 3.1, 3.2 и 3.4 некоторые особенности соответствия между двумя подходами, используемыми в электродинамике сплошных сред. Один из подходов основан на учете пространственной дисперсии: в нем рассматриваются три поля (E,D,B) и система уравнений дополняется материальными уравнениями (9) с диэлектрическим тензором ε(ω,к). В другом (возможно, более привычном), так называемом "симметричном" подходе в явном виде рассматриваются все четыре поля (E,D,B,H) и для монохроматических волн используются материальные уравнения

 

 

Использование уравнений (56) вместе с уравнениями Максвелла приводит к обычному дисперсионному уравнению (3) для плоских волн, распространяющихся в пространственно однородной среде.

В этом разделе мы рассмотрим условия, при которых магнитная восприимчивость µ(ω), входящая в уравнение (56), сохраняет свой физический смысл при описании непрерывной среды. Для естественных материалов этот вопрос анализируется в учебнике Ландау и Лифшица [6], где делается следующий вывод: "В отличие от ε(ω) магнитная проницаемость µ(со) при увеличении частоты сравнительно рано теряет свой физический смысл". Что это означает? Хорошо известно, что для перехода к пространственно-усредненным величинам, осуществляемого при макроскопическом описании, требуется, чтобы характеризующие среду микроскопические размеры а (таких размеров может быть несколько) были много меньше, чем длина, на которой изменяются макроскопические электромагнитные поля (т.е., например, длина электромагнитных волн в среде: а < λ ). Для естественных материалов а обычно порядка атомного или молекулярного размера, постоянной решетки или длины свободного пробега зарядов.

Во многих из недавних работ, последовавших за работой Пендри [54], макроскопические уравнения Максвелла используются для изучения распространения волн и отрицательного преломления в искусственных периодических или аморфных структурах (метаматериалах). Ссылки на более ранние исследования в рамках того же подхода как периодических, так и аморфных искусственных сред можно найти в [55]. Эти материалы - композиты, составленные из элементов самой разной формы (сфер, линейных проводников и т.д.). Геометрические размеры составляющих материал объектов ("искусственных молекул") и соответствующая постоянная решетки (новый масштаб длины а) могут быть в сотни раз больше, чем в естественных материалах. В качестве примера отметим здесь структуру, составленную из пар золотых наноштырей размером порядка 80-200 нм, изучавшуюся в работе [56] при длине световой волны в вакууме от 400 до 700 нм. Другой пример - недавняя работа [57], в которой использовалась двойная периодическая структура, состоящая из пар параллельных золотых нанопрутьев размером 780 х 220 х 50 нм. Длина волны падающего света варьировалась в области 500-2000 нм. Структуры, изучавшиеся в работах [56, 57], изготовлялись с целью создания метаматериала с отрицательным коэффициентом преломления на оптических частотах. Однако в обоих случаях фактически были созданы лишь "монослои", а не объемные структуры.

Существует два различных способа анализа таких композитов. Поскольку размеры нанообъектов существенно превосходят атомные размеры, каждый из этих объектов можно описывать в рамках обычной макро- скопической теории и характеризовать, например, соответствующими ε(ω) и µ(ω). Тогда задачу о распространении света в композитном материале можно решать, задавая на поверхностях нанообъектов граничные условия Максвелла, с помощью, например, метода конечных разностей численной электродинамики [58]. Очевидно, что при таком мощном и прямолинейном подходе нет необходимости вычислять эффективные материальные характеристики среды, а обычные значения ε(ω) и µ(ω) зависят от точки пространства. Любые ограничения, накладываемые на значение функции µ(ω)в этом подходе, - те же, что и для природных материалов.

Другой, концептуально привлекательный и допускающий аналитическое решение метод состоит в проведении "повторного усреднения" структуры композита и использовании для полученной эффективно-однородной среды макроскопических уравнений Максвелла. Такой метод применим до тех пор, пока λ>> а, т.е. пока среда может описываться соответствующими эффективными проницаемостью и восприимчивостью. Важно, что рассмотрение распространения волн, подобное тому, которое обычно проводится для естественных однородных конденсированных сред с а<<λ, оправдано только в том случае, когда возможно введение постоянных в пространстве эффективных параметров ε, µ. Однако оказывается, что представление об эффективной восприимчивости µ(ω) имеет ограниченную область применимости [6].

 

Дата: 2019-12-22, просмотров: 239.