Природа отрицательного преломления света: исторические заметки
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Оглавление

 

1 Введение

2. Природа отрицательного преломления света: исторические заметки

3. Уравнения Максвелла и пространственная дисперсия

4. Поляритоны с отрицательной групповой скоростью

5. Магнитная восприимчивость на оптических частотах

6. Другие интересные эффекты

7. Заключение

8.Список литературы



Введение

 

Отрицательное преломление света на границах раздела сред является естественным следствием того, что групповая скорость волн в одной из сред отрицательна. В данной курсовой работе кратко прослеживается история возникновения такой интерпретации этого явления. Рассматривается несколько физических систем, в которых нормальные электромагнитные волны (поляритоны) могут иметь отрицательную групповую скорость, в частности, в области оптических частот. Эти системы исследуются при учете пространственной дисперсии. При таком рассмотрении используется диэлектрический тензор εij(ω, k), который определяет полный электромагнитный отклик, создаваемый электромагнитной волной с частотой ω и волновым вектором k. Поляритоны с отрицательной групповой скоростью как в естественных, так и в искусственных материалах образуются в тех случаях, когда пространственная дисперсия достаточно сильна. Приводятся соответствующие примеры объемных и поверхностных волн как в гиротропных, так и в негиротропных средах. Обсуждается также соотношение между упомянутым подходом, использующим обобщенный тензор диэлектрической восприимчивости εij(ω, k), и более известным, но более ограниченным описанием, основанном на использовании диэлектрической проницаемости  и магнитной восприимчивости μ(ω).

В данной работе явление отрицательного преломления света обсуждается в терминах дисперсии μ(к) поляритонов - нормальных электромагнитных волн, распространяющихся в среде в области резонансов. Мы будем рассматривать макроскопически однородную и изотропную среду с пренебрежимо малой диссипацией: в этом случае не возникает дополнительных осложнений и физика рассматриваемых явлений особенно прозрачна. Иными словами, мы рассматриваем тела размером порядка или больше длины волны в среде λ. В изотропной среде частота волны со зависит только от модуля волнового вектора к = |к|, а значит, групповая скорость волнового пакета

 

 

направлена либо по к, либо по -к в зависимости от знака dμ(k)/dk. Как было отмечено Л.И. Мандельштамом [1 -3], второй из этих случаев, случай "отрицательной групповой скорости", dμ(k)/dk<0, связан с явлением отрицательного преломления. Английский оптик Артур Шустер в книге [4] также упоминал о такой возможности. Однако он рассматривал область аномальной дисперсии в окрестности резонанса, где определение групповой скорости в виде (1) неприменимо.

Хорошо известно (см., например, [3,5- 7]), что в среде с малой диссипацией скорость распространения энергии совпадает с групповой скоростью, так что вектор потока энергии S (в случае электромагнитных волн называемый вектором Пойнтинга) есть произведение

 

где U - усредненная по времени плотность энергии. В состоянии термодинамического равновесия U > О, следовательно, для волн с отрицательной групповой скоростью вектор потока энергии S направлен в сторону, противоположную волновому вектору к. Отрицательное преломление света и все необычные свойства материалов с отрицательным преломлением - естественные следствия такой связи между S и к. Мы будем рассматривать отрицательное преломление только электромагнитных волн, однако Мандельштамом было ясно показано (см. раздел 2.1), что отрицательное преломление - это общее свойство волн любой природы с отрицательной групповой скоростью.

Мы обсудим некоторые физические системы, в которых могут существовать поляритоны с отрицательной групповой скоростью и в которых, следовательно, можно пытаться реализовать отрицательное преломление (в том числе и в оптической области частот). Существование поляритонов с отрицательной групповой скоростью оказывается возможным для сред с достаточно сильной пространственной дисперсией диэлектрических свойств [7-9]. Наличие пространственной дисперсии означает существование нелокального диэлектрического отклика и выражается в зависимости обобщенного диэлектрического тензора ε>(μ,к) от волнового вектора к [6, 7].

Далее будет показано, что подход, основанный на учете пространственной дисперсии, содержит в себе как частный случай более известный подход, обычно используемый для описания отрицательного преломления света в среде с одновременно отрицательными диэлектрической проницаемостью, ε(ω)<0, и магнитной восприимчивостью, μ(ω)<0. В связи с такими средами обычно упоминается работа Веселаго [10], хотя в действительности значительно раньше этот случай впервые обсуждался в работе Сивухина [11], а затем в статьях Пафомова [12, 13]. В частности, в этих работах содержится замечание об отрицательной групповой скорости в такой среде. Ветвь с отрицательной групповой скоростью ясно видна на рис. 1. На рисунке 1а изображен закон дисперсии ω( k ) поперечных поляритонов, определяемый хорошо известным уравнением

 

 

где n(ω) - коэффициент преломления, при модельном выражении для диэлектрической проницаемости


 

 

Рис. 1.

 

Дисперсия ω(к) поперечных поляритонов в материале, описываемом модельной магнитной восприимчивостью (5) и диэлектрической проницаемостью, задаваемой (а) уравнением (4) и (б) уравнением (6) при специальном выборе характерных частот. Поляритонные ветви с отрицательной групповой скоростью указаны стрелками. Заметим, что рисунок (как и все другие в данном обзоре) выполнен не в масштабе: параметры подбирались с единственной целью - как можно яснее показать качественную сторону явления, имеющем резонансную структуру, и

 

 

Одна из трех поляритонных ветвей, изображенных на рис. 1а, очевидно, обладает отрицательной групповой скоростью, поскольку частота поляритона со убывает с возрастанием волнового вектора k (эта ветвь указана стрелкой). Разумеется, ветвь с отрицательной групповой скоростью находится как раз в той области частот, где ε(ω) (4) и µ(ω) (5) одновременно отрицательны. На рисунке 1 параметры подобраны таким образом, чтобы значения частоты и полюса (ω), и нуля (ωт2) магнитной восприимчивости попадали в щель хорошо известного продольно-поперечного (ωг ω) расщепления, возникающего вследствие резонанса диэлектрической проницаемости. Конечно, возможно и другое расположение этих частот.

На рисунке 16 изображена дисперсия поляритонов при том же выражении (5) для µ(ω), но модельный вид диэлектрической проницаемости задается неравенством (4), а выражением

 

 

соответствующим часто обсуждаемому случаю металлических систем, в которых отсутствует резонанс ω±, а ω совпадает с плазменной частотой ωр. Одна из двух поляритонных ветвей имеет отрицательную групповую скорость.





Излучение Черенкова

В тех средах, в которых распространяются волны с отрицательной групповой скоростью, излучение Черенкова имеет ряд особенностей. Эти особенности также уже давно известны. Из теории излучения Черенкова (см., например, [6]) легко получить, учитывая знак групповой скорости, "необычное" направление распространения излучения. Пусть заряженная частица движется в прозрачной среде вдоль оси х со скоростью v. В результате среда может излучать электромагнитные волны с частотой ω и волновым вектором к, такими, что ω = kxv . С другой стороны, волновой вектор и частота связаны соотношением k = nω / c , где n= ε- коэффициент преломления. Поскольку k > kx , должно выполняться соотношение v > vph = с/ n (ω), т.е. излучение волн с частотой со возможно, если скорость частицы превышает фазовую скорость vph .

 

 

Рис. 3. Иллюстрация к направлению излучения Черенкова в среде с положительной (а) и отрицательной (б) групповой скоростью.

 

Здесь v - направление скорости частицы, к - направление волнового вектора излучения, a S - направление вектора Пойнтинга. Вектор S направлен вдоль групповой скорости vg и определяет действительное направление излучения.

Если обозначить через θ угол между направлением движения частицы и волновым вектором излучения к, то легко видеть, что

 

 

Приведем цитату из [6]: "...излучение каждой частоты происходит вперед по направлению движения частицы и распределяется по поверхности конуса с углом раствора в, определяемым формулой (7)".

Из логики приведенного вывода ясно, что заключение о направлении излучения основано на неявном предположении о том, что отвечающая волновому вектору к групповая скорость vg положительна, а значит, направлена по к - ситуация, показанная на рис. За. Если же групповая скорость, наоборот, отрицательна, т.е. vg направлена в сторону, противоположную к, то направление излучения (поток энергии S) будет иметь противоположную ориентацию. В этом случае направление излучения образует тупой угол с направлением движения частицы, что впервые было отмечено Пафомовым [13]. На рисунке 36 изображено излучение Черенкова, направленное назад. Излучение распределено по поверхности конуса с тем же углом раствора.

В дальнейшем будет показано, что волны с отрицательной групповой скоростью могут возникать в кристаллах благодаря наличию пространственной дисперсии. В монографии [7, с. 405,406] обсуждаются различные случаи проявления пространственной дисперсии в излучении Черенкова. Особенно интересные эффекты как в гиротропных [7, 20], так и в негиротропных [7] средах возникают в окрестности экситонных резонансов: при возрастании скорости движущейся частицы направление конуса Черенкова изменяется от направления излучения вперед до направления излучения назад.

Интересно также влияние, оказываемое отрицательной групповой скоростью на переходное излучение заряженной частицы, проходящей через границу между двумя средами с разными диэлектрическими проницае-мостями. Важная роль знака групповой скорости для переходного излучения и особенности "обратного" эффекта Доплера впервые были изучены в работах Франка [21], Барсукова [22] и Пафомова [12].

 




Поверхностные поляритоны

 

Волны с отрицательной групповой скоростью могут возникать и при распространении поверхностных волн. В качестве примера рассмотрим поверхностные поляритоны вблизи резонанса с колебаниями поверхностного переходного слоя. Известно, что поверхностный переходный слой (например тонкая пленка на подложке) может коренным образом изменить дисперсию поверхностных поляритонов, если они находятся в резонансе с колебательными или электронными возбуждениями слоя [47]. Переходный слой, подобранный правильным образом, может привести к тому, что дисперсионные кривые поверхностных поляритонов будут иметь участки с отрицательной групповой скоростью.

Рассмотрим систему, состоящую из тонкой пленки толщиной d >> а (а - постоянная решетки) с диэлектрической проницаемостью ε(ω), которая помещена между двумя полубесконечными средами с диэлектрическими проницаемостями ε1(ω) > 0 и ε2(ω) < 0 соответственно. В этой системе в определенном интервале частот существуют поверхностные поляритоны, и их дисперсионная кривая ω(к) определяется уравнением [47]

 

 

Здесь к - двумерный волновой вектор поверхностных поляритонов, направленный вдоль границы раздела сред, среда предполагается изотропной в плоскости раздела. Параметры в уравнении (53) определяются так:

 


при этом предполагается, что kd<<1. При значении d = 0 параметры p и q также обращаются в нуль и (53) сводится к хорошо знакомому уравнению дисперсии поверхностных поляритонов на границе раздела между двумя полубесконечными средами. Описываемый нами эффект возникает благодаря наличию тонкой пленки, т.е. благодаря тому, что d =0. Однако, поскольку kd <<1, ясно, что члены уравнения (53), пропорциональные d , будут особенно важны в той области частот, где либо диэлектрическая проницаемость ε(ω)= 0 (продольный резонанс), либо обратная ей функция 1\ε(ω)=0 (поперечный резонанс). Часто в первом из этих двух случаев влияние тонкой пленки на дисперсию поверхностных поляритонов оказывается более сильным.

Для того чтобы проиллюстрировать, как существенно может влиять тонкая пленка на поверхностные поляритоны вблизи резонанса, рассмотрим тонкую металлическую пленку, напыленную на металлическую подложку. В этом случае εl = 1, а оптический отклик обоих металлов (пленки и подложки соответственно) можно аппроксимировать модельным выражением Друде:

 

 

В отсутствие тонкой пленки поверхностные плазмополяритоны подложки существуют в интервале частот

 

 

Пусть теперь ωр << ω, тогда резонанс между поверхностными поляритонами подложки и плазмонами тонкой металлической пленки возникает при частоте ω=ωр.

 

На рисунке 6 изображена дисперсия поляритонов, возникающих в такой системе. Здесь использованы значение (ωр)2 = 15,2 и значение толщины пленки.

 

Рис. 6. Дисперсия поверхностных поляритонов, возникающая при резонансе с колебаниями в тонком поверхностном слое. Резонанс возникает при частоте сор. Ясно видны и щель в спектре, и ветвь с отрицательной групповой скоростью (с волновым вектором к2 для данной частоты).

d =26 А, соответствующие экспериментальным результатам [48], полученным в случае алюминиевой подложки, покрытой серебряной пленкой. Благодаря резонансу поляритонный спектр, показанный на рис. 6, распадается на две ветви, разделенные щелью. Очевидно, что для данной частоты со существуют два решения, отвечающие нижней поляритонной ветви. То из них, которое отвечает большему значению к (обозначенному как к2), соответствует добавочной поверхностной поляритонной волне с отрицательной групповой скоростью. Из рисунка ясно видно, что частота убывает линейно, и причину этого легко прояснить с помощью следующего анализа.

В самом деле, при ω << ω величины диэлектрической проницаемости (54) должны удовлетворять условиям

 

 

Тогда вторым и четвертым членами в левой части уравнения (53) можно пренебречь. При достаточно больших к справедливо соотношение x=к и из уравнения (53) сразу следует уравнение дисперсии поляритона:

 

 

Уравнение (55) описывает отрицательную групповую скорость нижней поляритонной ветви, показанной на рис. 6.

Экспериментальное наблюдение [49] термически возбужденного излучения таких поверхностных поляритонов с отрицательной групповой скоростью осуществлено для системы, состоящей из пленки ZnSe на подложке из А1 и Сг. Эксперименты [50] для тонких пленок LiF на сапфировой подложке подтвердили следующую из уравнения (53) зависимость величины энергетической щели от толщины пленки (величина щели пропорциональна d). С ростом резонансной плазменной частоты эта щель может существенно увеличиваться. Так, в упомянутой работе [48] наблюдалась щель величиной 0,4 эВ в спектре поверхностных плазмонов для алюминиевой подложки, покрытой серебряной пленкой толщиной d = 2,6 нм, что хорошо согласуется с теоретической оценкой. Расщепление дисперсии поверхностных поляритонов наблюдалось также в системах, состоящих из органического монослоя [51] и тонкой органической пленки [52], помещенных на серебряную подложку.

Теория распространения поверхностных волн при учете дифракции волн на краю пленки и добавочных поверхностных волн была развита в работе [53]. Наличие дифракции и превращения поверхностных волн в объемное излучение и, наоборот, объемного излучения в поверхностные волны существенно усложняет проблему нахождения ДГУ для поверхностных волн.





Другие интересные эффекты

Заключение

 

Нам было приятно в этом обзоре еще раз отдать дань уважения Л.И. Мандельштаму, указавшему еще в начале 1940-х годов на то, что отрицательное преломление волн на границе раздела сред возникает как следствие отрицательной групповой скорости в одной из граничащих сред [1-3]. Понимание этого обстоятельства заставляет обратить особое внимание на различные факторы, оказывающие влияние на закон дисперсии ω(к) волн, распространяющихся в среде.

Наиболее общий метод исследования таких факторов для электромагнитных волн в эффективно однородной среде состоит в учете пространственной дисперсии. При этом вводится обобщенный диэлектрический тензор ε(ω,k), отвечающий отклику среды на возмущения с частотой оа и волновым вектором к. Нормальные волны (поляритоны) с отрицательной групповой скоростью могут появиться в среде (как в естественных, так и в искусственных метаматериалах), если пространственная дисперсия (зависимость диэлектрического тензора от к) достаточно сильна. Один из частных случаев возникновения такой ситуации (соответствующий пространсвенной дисперсии 00k2) более известен как случай материала, в котором одновременно отрицательны диэлектрическая проницаемость ε(ω) и магнитная воcприимчивость µ(ω). Подход, основанный на учете пространственной дисперсии, позволяет работать также в диапазоне оптических частот, где µ(ω) теряет традиционный физический смысл, и даже в тех ситуациях, когда в среде не существует отклика магнитодипольного типа.

С помощью тензора εij(ω,к) можно единым образом рассматривать и более сложные материальные уравнения, и вытекающие из них качественно новые эффекты, такие как добавочные поляритонные волны. В настоящем обзоре мы использовали этот подход для описания нескольких физических систем, в которых существуют условия для распространения поляритонов с отрицательной групповой скоростью при оптических частотах. В качестве примеров рассматривались гиротропные и не-гиротропные среды, объемные и поверхностные волны. Мы надеемся, что эти примеры могут оказаться полезными при подборе материалов для экспериментальных исследований.

Мы сосредоточили основное внимание на физических причинах возникновения поляритонов с отрицательной групповой скоростью. При этом мы не могли детально обсудить многие важные факторы, влияющие на возможность практической реализации эффектов, связанных с существованием отрицательного преломления. Один из них состоит в наличии диссипации - проблемы, разумеется, общей для всех частотных интервалов. Таким образом, например, кристаллы с интенсивными и узкими экситонными резонансами заслуживают особого внимания. Другая проблема состоит в сравнительно низкой эффективности возбуждения добавочных поляритонов из-за рассогласования волновых векторов. Для повышения эффективности их исследования в кристаллах при положительной групповой скорости добавочных волн были предложены схемы, которые, возможно, могут быть применены и в случае отрицательного преломления.



Список литературы

 

1. Мандельштам Л.И. Полное собрание трудов Т. 5 (М.: Изд-во АН СССР, 1950), см. лекции, прочитанные 26 февраля 1940 г. и 5 мая 1944 г.

2. Мандельштам Л.И. ЖЭТФ 15 475 (1945)

3. Мандельштам Л.И. Лекции по оптике, теории относительности и квантовой механике (М.: Наука, 1972)

4. Schuster A (Sir) An Introduction to the Theory of Optics 2nd ed. (London: E. Arnold, 1909)

5. Brillouin L Wave Propagation and Group Velocity (New York: Academic Press, 1960)

6. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред (М.: Наука, 1992)

7. Агранович В.М., Гинзбург В.Л. Кристаллооптика с учетом пространственной дисперсии и тероия экситонов (М.: Наука, 1965)

8. Agranovich V М et al. Phys. Rev. В 69 165112 (2004)

9. Agranovich V M et al. J. Lumin. 110 167 (2004)

10. Веселаго В Г УФН 92 517 (1967)

11. Сивухин Д В Оптика и спектроск. 3 308 (1957)

12. Пафомов В ЕЖЭГФ 36 1853 (1959)

13. Пафомов В Е ЖЭТФ 30 761 (1956); 33 1074 (1957)

14. Shelby R A, Smith D R, Schultz S Science 292 77 (2001)

15. Pendry J В Phys. Rev. Lett. 85 3966 (2000)

16. Фейнберг ЕЛ УФН 172 91 (2002)

17. McDonald К Т Am. J. Phys. 69 607 (2001)

18. Lamb H Proc. London Math. Soc. 1 473 (1904)

19. Laue M Ann. Phys. (Leipzig) 18 523 (1905)

20. Агранович В М, Пафомов В Е, Рухадзе А А ЖЭТФ 36 238 (1959); БасеФ Г, Каганов М И, Яковенко В М ФТТ4 3260 (1962)

21. Франк И М ЖЭТФ 36 823 (1959)

22. Барсуков К.А. ЖЭТФ 36 1485 (1959)

23. Ильинский Ю.А., Келдыш Л.В. Взаимодействие электромагнитного излучения с веществом (М.: Изд-во МГУ, 1989)

24. Рытов С.М. ЖЭТФ 17 930 (1947)

25. Герценштейн М.Е. ЖЭТФ 26 680 (1954)

26. Melrose D В, McPhedran R С Electromagnetic Processes in Dispersive Media: a Treatment on the Dielectric Tensor (Cambridge: Cambridge Univ. Press, 1991)

27. Голубков А.А, Макаров В А УФН 165 339 (1995)

28. Виноградов А.П УФН 172 363 (2002)

29. Bedeaux D, Osipov M, Vlieger J J. Opt. Soc. Am. A 12 2431 (2004)

30. Keldysh L V, Kirzhmtz D A, Maradudin A A (Eds) The Dielectric Function of Condensed Systems (Modern Problems in Condensed Matter Sciences, Vol. 24) (Amsterdam: North-Holland, 1989)

31. Mahan G D Many-Particle Physics 3rd ed. (New York: Kluwer Acad./PlenumPubl.,2000)

32. Toyozawa Y Optical Processes in Solids (Cambridge: Cambridge Univ. Press, 2003)

33. Craig D P, Thirunamachandran T Molecular Quantum Electrodynamics: an Introduction to Radiation-Molecule Interactions (London: Academic Press, 1984)

34. Barron L D Molecular Light Scattering and Optical Activity 2nd ed. (Cambridge: Cambridge Univ. Press, 2004)

35. Джексон Дж Д Классическая электродинамика (М.: Мир, 1965)

36. Гинзбург В Л ЖЭТФ 34 1993 (1958)

37. Пекар С.И ЖЭТФ 33 1022 (1957)

38. Silvestri L et al. Nuovo Cimento С 27 437 (2004)

39. Агранович В М УФЯ71 141 (1960)

40. Pine A S, Dresselhaus G Phys. Rev. 188 1489 (1969)

41. Pendry J В Science 306 1353 (2004)

42. Tretyakov S et al. J. Electromagn. Waves Appl. 17 695 (2003)

43. Mackay T G Microw. Opt. Technol. Lett. 45 120 (2005)

44. Jin Y, He S Opt. Express 13 4974 (2005)

45. Monzon C, Forester D W Phys. Rev. Lett. 95 123904 (2005)

46. Agranovich V M, Gartstein Yu N, Zakhidov A A Phys. Rev. В 73 045114(2006)

47. Агранович В М, в сб. Поверхностные поляритоны: электромагнитные волны на поверхностях и границах раздела сред (Под ред. В М Аграновича, Д Л Миллса) (М.: Наука, 1985)

48. Lopez-Rios T, Abeles F, Vuye G J. Phys. (Paris) 39 645 (1978)

49. Vinogradov E A, Leskova T A Phys. Rep. 194 273 (1990)

50. Yakovlev V A, Nazin V G, Zhizhin G N Opt. Commun. 15 293 (1975)

51. Pockrand I, Brillante A, Mobius D J. Chem. Phys. 11 6289 (1982)

52. Bellessa J et al. Phys. Rev. Lett. 93 036404 (2004)

53. Agranovich V M, Leskova T A Prog. Surf. Sci. 29 169 (1988)

54. Pendry J В Phys. Rev. Lett. 85 3966 (2000)

Оглавление

 

1 Введение

2. Природа отрицательного преломления света: исторические заметки

3. Уравнения Максвелла и пространственная дисперсия

4. Поляритоны с отрицательной групповой скоростью

5. Магнитная восприимчивость на оптических частотах

6. Другие интересные эффекты

7. Заключение

8.Список литературы



Введение

 

Отрицательное преломление света на границах раздела сред является естественным следствием того, что групповая скорость волн в одной из сред отрицательна. В данной курсовой работе кратко прослеживается история возникновения такой интерпретации этого явления. Рассматривается несколько физических систем, в которых нормальные электромагнитные волны (поляритоны) могут иметь отрицательную групповую скорость, в частности, в области оптических частот. Эти системы исследуются при учете пространственной дисперсии. При таком рассмотрении используется диэлектрический тензор εij(ω, k), который определяет полный электромагнитный отклик, создаваемый электромагнитной волной с частотой ω и волновым вектором k. Поляритоны с отрицательной групповой скоростью как в естественных, так и в искусственных материалах образуются в тех случаях, когда пространственная дисперсия достаточно сильна. Приводятся соответствующие примеры объемных и поверхностных волн как в гиротропных, так и в негиротропных средах. Обсуждается также соотношение между упомянутым подходом, использующим обобщенный тензор диэлектрической восприимчивости εij(ω, k), и более известным, но более ограниченным описанием, основанном на использовании диэлектрической проницаемости  и магнитной восприимчивости μ(ω).

В данной работе явление отрицательного преломления света обсуждается в терминах дисперсии μ(к) поляритонов - нормальных электромагнитных волн, распространяющихся в среде в области резонансов. Мы будем рассматривать макроскопически однородную и изотропную среду с пренебрежимо малой диссипацией: в этом случае не возникает дополнительных осложнений и физика рассматриваемых явлений особенно прозрачна. Иными словами, мы рассматриваем тела размером порядка или больше длины волны в среде λ. В изотропной среде частота волны со зависит только от модуля волнового вектора к = |к|, а значит, групповая скорость волнового пакета

 

 

направлена либо по к, либо по -к в зависимости от знака dμ(k)/dk. Как было отмечено Л.И. Мандельштамом [1 -3], второй из этих случаев, случай "отрицательной групповой скорости", dμ(k)/dk<0, связан с явлением отрицательного преломления. Английский оптик Артур Шустер в книге [4] также упоминал о такой возможности. Однако он рассматривал область аномальной дисперсии в окрестности резонанса, где определение групповой скорости в виде (1) неприменимо.

Хорошо известно (см., например, [3,5- 7]), что в среде с малой диссипацией скорость распространения энергии совпадает с групповой скоростью, так что вектор потока энергии S (в случае электромагнитных волн называемый вектором Пойнтинга) есть произведение

 

где U - усредненная по времени плотность энергии. В состоянии термодинамического равновесия U > О, следовательно, для волн с отрицательной групповой скоростью вектор потока энергии S направлен в сторону, противоположную волновому вектору к. Отрицательное преломление света и все необычные свойства материалов с отрицательным преломлением - естественные следствия такой связи между S и к. Мы будем рассматривать отрицательное преломление только электромагнитных волн, однако Мандельштамом было ясно показано (см. раздел 2.1), что отрицательное преломление - это общее свойство волн любой природы с отрицательной групповой скоростью.

Мы обсудим некоторые физические системы, в которых могут существовать поляритоны с отрицательной групповой скоростью и в которых, следовательно, можно пытаться реализовать отрицательное преломление (в том числе и в оптической области частот). Существование поляритонов с отрицательной групповой скоростью оказывается возможным для сред с достаточно сильной пространственной дисперсией диэлектрических свойств [7-9]. Наличие пространственной дисперсии означает существование нелокального диэлектрического отклика и выражается в зависимости обобщенного диэлектрического тензора ε>(μ,к) от волнового вектора к [6, 7].

Далее будет показано, что подход, основанный на учете пространственной дисперсии, содержит в себе как частный случай более известный подход, обычно используемый для описания отрицательного преломления света в среде с одновременно отрицательными диэлектрической проницаемостью, ε(ω)<0, и магнитной восприимчивостью, μ(ω)<0. В связи с такими средами обычно упоминается работа Веселаго [10], хотя в действительности значительно раньше этот случай впервые обсуждался в работе Сивухина [11], а затем в статьях Пафомова [12, 13]. В частности, в этих работах содержится замечание об отрицательной групповой скорости в такой среде. Ветвь с отрицательной групповой скоростью ясно видна на рис. 1. На рисунке 1а изображен закон дисперсии ω( k ) поперечных поляритонов, определяемый хорошо известным уравнением

 

 

где n(ω) - коэффициент преломления, при модельном выражении для диэлектрической проницаемости


 

 

Рис. 1.

 

Дисперсия ω(к) поперечных поляритонов в материале, описываемом модельной магнитной восприимчивостью (5) и диэлектрической проницаемостью, задаваемой (а) уравнением (4) и (б) уравнением (6) при специальном выборе характерных частот. Поляритонные ветви с отрицательной групповой скоростью указаны стрелками. Заметим, что рисунок (как и все другие в данном обзоре) выполнен не в масштабе: параметры подбирались с единственной целью - как можно яснее показать качественную сторону явления, имеющем резонансную структуру, и

 

 

Одна из трех поляритонных ветвей, изображенных на рис. 1а, очевидно, обладает отрицательной групповой скоростью, поскольку частота поляритона со убывает с возрастанием волнового вектора k (эта ветвь указана стрелкой). Разумеется, ветвь с отрицательной групповой скоростью находится как раз в той области частот, где ε(ω) (4) и µ(ω) (5) одновременно отрицательны. На рисунке 1 параметры подобраны таким образом, чтобы значения частоты и полюса (ω), и нуля (ωт2) магнитной восприимчивости попадали в щель хорошо известного продольно-поперечного (ωг ω) расщепления, возникающего вследствие резонанса диэлектрической проницаемости. Конечно, возможно и другое расположение этих частот.

На рисунке 16 изображена дисперсия поляритонов при том же выражении (5) для µ(ω), но модельный вид диэлектрической проницаемости задается неравенством (4), а выражением

 

 

соответствующим часто обсуждаемому случаю металлических систем, в которых отсутствует резонанс ω±, а ω совпадает с плазменной частотой ωр. Одна из двух поляритонных ветвей имеет отрицательную групповую скорость.





Природа отрицательного преломления света: исторические заметки

Дата: 2019-12-22, просмотров: 232.