Данная методика заключается в определении поправки к коэффициенту дисконтирования, учитывающей риск. Данная поправка выбирается в зависимости от характера инвестиционной деятельности. Автор в /4/ приводит пример поправок к коэффициенту дисконтирования, который показан в таблице 2.
Таблица 2 – Поправки на риск к коэффициентам дисконтирования показателей инвестиционного проекта
Уровни риска | Пример цели проекта | Премия за риск, % |
Очень низкий | Вложения в государственные облигации | 0 |
Низкий | Вложение в надежную технику | 3 – 5 |
Средний | Увеличение объема продаж существующей продукции | 8 – 10 |
Высокий | Производство и продвижение на рынок нового продукта | 13 – 15 |
Очень высокий | Вложения в исследования и инновации | 18 – 20 |
Чем выше степень рискованности проекта, тем больше значение поправки и, соответственно, меньше значение приведенной стоимости проекта и тем менее охотно инвесторы склонны вкладывать капиталы в такие проекты
В /9/ автор указывает достоинства этого метода - простота расчетов, а также в понятности и доступности. Вместе с тем, как отмечает автор, метод имеет существенные недостатки.
Метод не дает никакой информации о степени риска (возможных отклонениях результатов). При этом полученные результаты существенно зависят только от величины надбавки за риск.
Он также предполагает увеличение риска во времени с постоянным коэффициентом, что вряд ли может считаться корректным, так как для многих проектов характерно наличие рисков в начальные периоды с постепенным снижением их к концу реализации. Таким образом, прибыльные проекты, не предполагающие со временем существенного увеличения риска, могут быть оценены неверно и отклонены.
Анализ чувствительности
В /1/ автор описывает цель метода как сравнительный анализ влияния различных факторов инвестиционного проекта на ключевой показатель эффективности проекта, например, внутреннюю норму прибыльности.
Сначала производится выбор ключевого показателя эффективности инвестиций, в качестве которого может служить внутренняя норма прибыльности (IRR) или чистое современное значение (NPV). Далее происходит выбор факторов, относительно которых разработчик инвестиционного проекта не имеет однозначного суждения и установление их номинальных и предельных значений. Далее производится расчет ключевого показателя для всех выбранных предельных значений неопределенных факторов. В конце анализа происходит построение графика чувствительности для всех неопределенных факторов. В западном инвестиционном менеджменте этот график носит название “Spider Graph”. Данный график позволяет сделать вывод о наиболее критических факторах инвестиционного проекта, с тем чтобы в ходе его реализации обратить на эти факторы особое внимание с целью сократить риск реализации инвестиционного проекта.
В /9/ автор отмечает, что данный метод является хорошей иллюстрацией влияния отдельных исходных факторов на конечный результат проекта.
Главным недостатком данного метода, по мнению автора, является предпосылка о том, что изменение одного фактора рассматривается изолированно, тогда как на практике все экономические факторы в той или иной степени коррелированны.
Анализ сценариев
Это прием анализа риска, который, как отмечает автор в /1/, на ряду с базовым набором исходных данных проекта рассматривает ряд других наборов данных, которые, по мнению разработчиков проекта, могут иметь место в процессе реализации. В анализе сценария, финансовый аналитик просит технического менеджера подобрать показатели при “плохом” стечении обстоятельств (малый объем продаж, низкая цена продажи, высокая себестоимость единицы товара, и т. д.) и при “хорошем”. После этого, NPV при хороших и плохих условиях вычисляются и сравниваются с ожидаемым NPV.
В /9/ автор говорит о том, что метод позволяет получать достаточно наглядную картину для различных вариантов реализации проектов, а также предоставляет информацию о чувствительности и возможных отклонениях, а применение программных средств типа Excel позволяет значительно повысить эффективность подобного анализа путем практически неограниченного увеличения числа сценариев и введения дополнительных переменных.
Дата: 2019-05-29, просмотров: 224.