Проблемы разработки имитационных моделей
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Имитационное моделирование — очень обширная область. Можно по-разному подходить к классификации решаемых в ней задач. В соответствии с одной из классификаций эта область насчитывает в настоящее время че­тыре основных направления:

  1. моделирование динамических систем,
  2. дискретно-событийное моделирование,
  3. системная динамика
  4. агентное моделирование.

В каждом из этих направлений развиваются свои инструментальные средст­ва, упрощающие разработку моделей и их анализ. Данные направления (кроме агентного моделирования) базируются на концепциях и парадигмах, которые появились и были зафиксированы в инструментальных пакетах мо­делирования несколько десятилетий назад и с тех пор не менялись.

1. Моделирование динамических систем

Направлено на исследова­ние сложных объектов, поведение которых описывается системами алгебро-дифференциальных уравнений. Инженерным подходом к моделированию таких объектов 40 лет назад была сборка блок-схем из решающих блоков аналоговых компьютеров: интеграторов, усилителей и сумматоров, токи и напряжения в которых представляли переменные и параметры моделируе­мой системы. Этот подход и сейчас является основным в моделировании динамических систем, только решающие блоки являются не аппаратными, а программными.

2. Дискретно-событийное моделирование

В нем рассматриваются системы с дискретными со­бытиями. Для создания имитационной модели такой системы моделируемая система приводится к потоку заявок, которые обрабатываются активными приборами. Например, для моделирования процесса обслуживания физических лиц в банке физические лица представляются в виде потока заявок, а работники банка, обслуживающие их представляются активными приборами. Идеология дискретно-событийного моделирования была сформулирована более 40 лет назад и реализована в среде моделирования GPSS, которая с некоторыми модификациями до сих пор используется для обучения имитационному моделированию.

3. Системная динамика – это направление в изучении сложных систем, исследующее их поведение во времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петель обратных связей, задержек реакции, влияния среды и других. Основоположником системной динамики является американский ученый Джей Форрестер. Дж. Форрестер применил принципы обратной связи, существующей в системах автоматического регулирования, для демонстрации того, что динамика функционирования сложных систем, в первую очередь производственных и социальных, существенно зависит от структуры связей и временных задержек в принятии решений и действиях, которые имеются в системе. В 1958 году он предложил использовать для компьютерного моделирования сложных систем потоковые диаграммы, отра­жающих причинно-следственные связи в сложной системе.

Системная динамика как методология и инструмент ис­следования сложных экономических и социальных процессов изучается во многих бизнес-школах по всему миру.

4. Агентное моделирование - метод имитационного моделирования, исследующий поведение децентрализованных агентов и то, как такое поведение определяет поведение всей системы в целом. В отличие от системной динамики аналитик определяет поведение агентов на индивидуальном уровне, а глобальное поведение возникает как результат деятельности множества агентов (моделирование «снизу вверх»).

Агентное моделирование включает в себя элементы теории игр, сложных систем, мультиагентных систем и эволюционного программирования, методы Монте-Карло, использует случайные числа.

Существует множество определений понятия агента. Общим во всех этих определениях является то, что агент — это некоторая сущность, которая обладает активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, может взаимодействовать с окружением и другими агентами, а также может изменяться (эволюциони­ровать). Многоагентные (или просто агентные) модели используются для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами, а наоборот, эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей — получить представле­ние об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных ак­тивных объектов и взаимодействии этих объектов в системе.

Имитационное моделирование традицион­ными методами реально используется уз­ким кругом профессионалов, которые должны иметь не только глубокие знания в той прикладной области, для которой строится модель, но также глубокие знания в программировании, теории вероятностей и статистике.

Дата: 2019-04-23, просмотров: 271.