Задача 3.1 . Задано трикутник АВС. Як слід побудувати точку О всередині трикутника, щоб площі трикутників АОС, ВОС та АОВ відносилися як 7 : 11 : 13.
Розв’язок.
1 спосіб.
Розглянемо трикутник АВС й побудуємо точку K, яка ділить сторону AB у відношенні 7 : 11, рахууючи від вершини A, та точку L, яка ділить сторону CA у відношенні 11 : 13, рахууючи від вершини C.
Нехай O – точка перетину відрізків CK та BL. Покажемо, що O – шукана точка. Зазначимо, що у трикутників ACK та BCK спільна висота, яка опущена з вершини С, тому відношення їх площин дорівнює відношенню основ
SACK : SBCK = AK : BK.
Аналогічно, SAOK : SBOK = AK : BK.
Застосовуючи властивість пропорції ( Û ), одержуємо
SAOС : SBOС = AK : BK = 7 : 11.
Аналогічно, розглядаючи дві пари трикутників з основами AL та СL, доводимо, що
SBOС : SAOВ = CL : AL = 11 : 13.
Отже, SAOС : SBOС : SAOВ = 7 : 11 : 13, що і необхідно було довести.
2 спосіб.
З теореми Чеви випливає, що пряма АO розділить сторону ВС у відношенні 13 : 7, рахууючи від вершини В. Якщо застосовувати теорему Чеви в обернену сторону, то до розв’язку задачі можна було підійти інакше.
Нехай задано відрізок PQ, точка E, яка ділить його у відношенні p : q, де p та q – задані числа, й точка F, яка не належить прямій PQ. Аналогічно з наведеним розв’язком можна довести, що геометричним місцем точок М площини, для яких SPFM : SQFM = p : q є пряма EF (за виключенням точок E та F).
Отже, для того, щоб побудувати шукану точку О можна розділити сторони АВ, ВС та СА трикутника АВС відповідно точками K, N та L так, щоб
AK : BK = 7 : 11; BN : CN = 13 : 7; CL : AL = 11 : 13.
Тоді, згідно з теоремою Чеви , отже, відрізки AN, BL та CK перетинаються в одній точці, яка й буде шуканою.
Задача 3. 2. В трикутник вписано півколо так, що його діаметр лежить на стороні , а дуга дотикається сторін та відповідно в точках та . Довести, що прямі та перетинаються на висоті трикутника.
Доведення.
З умови задачі випливає, що точки та лежать на сторонах трикутника . Отже, достатньо довести, що
Центр півкола з'єднаємо з точками дотику та (див. рисунок). Позначимо через радіус кола, з прямокутних трикутників та знаходимо
.
З прямокутних трикутників та маємо
.
Зазначимо, що відрізки та дотичних до кола рівні, отже отримаємо
.
Отже, згідно з теоремою Чеви прямі та перетинаються в одній точці.
Задача 3. 3. Через вершини трикутника і точку , яка лежить всередині трикутника, проведені прямі, що перетинають сторони відповідно в точках , при цьому .
Довести, що , де – площа трикутника .
Як належить обрати точку , щоб площа трикутника була найбільшою?
Розв’язок.
Позначимо площі трикутників , через .
Так як площі двох трикутників, які мають спільний кут, відносяться як добуток сторін, що утворюють цей кут, то
.
Аналогічно , .
Далі знаходимо
.
Підставив в цю рівність знайдені вище значення та прийняв до уваги, що в силу теореми Чеви , одержуємо:
.
Площа трикутника буде найбільшою при мінімальному значенні . Проведемо оцінку цього добутку.
Скористаємося нерівністю нерівність :
,
при цьому рівність має місце тоді й тільки тоді, коли .
Отже, шукана точка – точка перетину медіан трикутника , для якої .
Задача 3. 4. Знайти в трикутнику таку точку , щоб добуток мав найбільшу величину ( – точки перетину прямих зі сторонами ).
Розв’язок.
Проведемо медіани трикутника , які перетинаються в точці . Оскільки середнє геометричне двох величин не більше їх середнього арифметичного, то
, , .
Піднесемо кожну нерівність до квадрата та перемножимо:
Згідно з теоремою Чеви маємо
.
Отже,
.
Нерівність перетворюється в рівність у випадку збігу основ прямих Чеви з серединами відповідних сторін, отже, в цьому випадку добуток має найбільшу величину , де – сторони трикутника.Отже, шуканою точкою є точка перетину медіан трикутника.
Задача 3. 5. Прямі перетинають сторони трикутника (або їхні продовження) у точках . Довести, що:
а) прямі, що проходять через середини сторін паралельно прямим , перетинаються в одній точці;
б) прямі, що з'єднують середини сторін із серединами відрізків , перетинаються в одній точці.
Доведення.
Нехай – середини сторін . Розглянуті прямі проходять через вершини трикутника , при цьому в задачі а) вони ділять його сторони в таких же відношеннях, у яких прямі ділять сторони трикутника , а в задачі б) – вони ділять їх у зворотних відношеннях. Залишається скористатись теоремою Чеви.
Задача 3. 6. На сторонах трикутника взяті точки так, що відрізки перетинаються в одній точці. Прямі і перетинають пряму, що проходить через вершину паралельно стороні , в точках і відповідно. Довести, що .
Доведення.
Оскільки і , то
Тому
Задача 3. 7. а) Нехай – довільні кути, при цьому сума будь-яких двох з них менше 180. На сторонах трикутника зовнішнім чином побудовані трикутники , що мають при вершинах кути . Довести, що прямі перетинаються в одній точці.
б) довести аналогічне твердження для трикутників, побудованих на сторонах трикутника внутрішнім чином.
Доведення.
Нехай прямі перетинають прямі в точках .
Якщо і , то
Останній вираз дорівнює у всіх випадках.
Аналогічно записуються вирази для і . Перемножуємо всі вирази і залишається скористатися теоремою Чеви.
Задача 3. 8. Прямі перетинають прямі в точках відповідно. Точки обрані на прямих так, що
, , .
Довести, що прямі також перетинаються в одній точці (або паралельні). Такі точці і називають ізотомічно спряженими відносно трикутника .
Доведення очевидним чином випливає з теореми Чеви.
Задача 3. 9. На сторонах трикутника взяті точки , при цьому прямі перетинаються в одній точці . Довести, що прямі
симетричні цим прямим відносно відповідних бісектрис, також перетинаються в одній точці . Такі точки і називають ізогонально спряженими відносно трикутника .
Доведення.
Можна вважати, що точки лежать на сторонах трикутника .
Згідно з теоремою Чеви в формі синусів
Оскільки прямі симетричні прямим відносно бісектрис, то , і т.д., тому
Отже,
,
тобто прямі перетинаються в одній точці.
Задачі для самостійної роботи
Задача 3. 10. Протилежні сторони опуклого шестикутника попарно паралельні. Довести, що прямі, які з'єднують середини протилежних сторін, перетинаються в одній точці.
Доведення
Нехай діагоналі і даного шестикутника перетинаються в точці ; і – середини сторін і . Оскільки - трапеція, відрізок проходить через точку . Згідно з теоремою синусів
, .
Оскільки і , то .
Аналогічні співвідношення можна записати і для відрізків, які з'єднують середини двох інших пар протилежних сторін. Перемножуючи ці співвідношення, одержуємо необхідне.
Задача 3. 11. Через точки і , що лежать на колі, проведено дотичні, які перетина-ються в точці . На дузі взяті точки і . Прямі і перетинаються в точці , і – у точці . Довести, що пряма проходить через точку .
Доведення.
Згідно з теоремою Чеви у формі синусів
Але .
Тому .
З цього випливає, що точки лежать на одній прямій, оскільки функція монотонна по :
Задача 3. 12. а) На сторонах рівнобедреного трикутника з основою взяті точки так, що прямі перетинаються в одній точці. Довести, що
б) В середині рівнобедреного трикутника з основою взяті точки і так, що і . Довести, що точки лежать на одній прямій.
Доведення.
а) Згідно з теоремою Чеви
,
а по теоремі синусів
Підставляючи ці чотири рівності в попередню рівність, і враховуючи, що , одержуємо необхідне.
б) Позначимо точки перетину прямих і з основою через і . Потрібно довести, що . З а) випливає, що , тобто .
Задача 3. 13. У трикутнику проведені бісектриси . Бісектриси перетинають відрізки та в точках . Довести, що .
Доведення.
Нехай відрізки і перетинають сторону в точках і . Тоді
Якщо – точка перетину бісектрис трикутника , то
,
отже,
.
Помітивши, що , і проводячи аналогічні обчислення для , одержимо .
Оскільки , то .
Задача 3. 14. На сторонах трикутника взяті точки , при цьому перетинаються в одній точці. Довести, що .
Доведення
Нехай . Тоді
Згідно з теоремою Чеви
,
тобто .
Крім того,
Отже, .
Задача 3. 15. На сторонах трикутника у зовнішню сторону побудовані квадрати. – середини протилежних сторін квадратів, побудованих на відповідно. Довести, що прямі перетинаються в одній точці.
Доведення.
Нехай – точки перетину прямих зі сторонами відповідно.
Відношення дорівнює відношенню висот, які опущено з точок та на сторону , тобто дорівнює відношенню .
Далі,
,
де .
Аналогічно,
, .
Перемножуючи ці рівності, маємо
.
Згідно з теоремою Чеви прямі перетинаються в одній точці.
Задача 3. 16. Нехай з точки , яка взята зовні кола, проведені дві дотичні і до кола та дві січні, і нехай та – точки перетину кола з першою січною, а точки та – з другою. Тоді прямі і перетинаються в одній точці.
Доведення.
Застосуємо теорему Чеви до трикутника . Прямі і перетинаються в одній точці, якщо виконується рівність
(*)
Всі кути, що фігурують в останньому співвідношенні, – вписані в задане коло; синуси цих кутів пропорційні довжинам хорд, що стягаються ними (наприклад, , де – радіус кола).Тому рівність (*) еквівалентна такій рівності:
(**)
Покажемо, що (**) насправді виконується. З подоби трикутників й одержуємо . З подоби трикутників і маємо , і нарешті, з подоби трикутників і знаходимо .
Перемножуючи останні три рівності, маємо (*)
.
Задача 3. 17. Трикутник вписано в трикутник : вершини лежать на сторонах відповідно. Довести, що якщо прямі, які проведені через вершини трикутника перпендикулярно до відповідних сторін трикутника , перетинаються в одній точці, то прямі, які проведені через вершини трикутника перпендикулярно до відповідних сторін трикутника перетинаються в одній точці.
Доведення.
Нехай прямі, які проходять через вершини трикутника перпендикулярно до відповідних сторін трикутника , перетинаються в точці .
Оскільки точки лежать на колі, побудованому на відрізку як на діаметрі, то . Опустимо з точки перпендикуляр на пряму . Оскільки , то , тобто пряма симетрична прямій відносно бісектриси кута .
Аналогічні міркування для інших кутів показують, що перпендикуляри , які опущені з вершин трикутника на сторони трикутника симетричні прямим відносно бісектрис трикутника . Згідно з задачею 3.9 прямі перетинають в одній точці.
Задача 3.18 (теорема Ван Обеля). На сторонах трикутника взято точки , так що прямі перетинаються в одній точці. Довести, що
.
Доведення.
Нехай прямі перетинають пряму, яка проходить через точку паралельно прямій , в точках і .
Оскільки трикутник подібний до трикутника , трикутник подібний до трикутника за першою ознакою подібності трикутників, то ; . Додавши ці рівності і, враховуючи, що , одержуємо:
.
Далі, трикутник подібний до трикутника і трикутник подібний до трикутника .
Тому ; .
Звідси випливає, що . З цієї рівності і рівності безпосередньо випливає, що
.
Задача 3. 19 Задано трикутник . Довести, що чевіани , які ділять його периметр навпіл, перетинаються в одній точці.
Доведення.
Нехай довжини сторін відповідно , тоді число згідно з нерівністю трикутника додатнє і менше .
Нехай точка лежить на стороні і така, що . Зрозуміло, що пряма ділить периметр трикутника навпіл, аналогічно з точками і (можна помітити, що – точки дотику вневписаних кіл трикутника ).
Переконавшись в існуванні потрібних точок, розв’яжемо основну задачу.
Для цього обчислюємо довжини всіх необхідних відрізків.
, , ,
, , .
Зрозуміло, що , отже чевіани перетинаються в одній точці.
РОЗДІЛ 4
Дата: 2019-05-28, просмотров: 219.