Досить ефективно при розв’язанні деяких задач застосовується мало відома стереометрична теорема Менелая для довільного тетраедра.
Теорема Менелая для тетраедра. У довільному тетраедрі точки належать ребрам і відповідно (див. рис. 2.1). Для того, щоб точки належали однієї площині, необхідно і достатньо, щоб виконувалось співвідношення
(2.1)
Рис 2.1 До формулювання теореми Менелая для довільного тетраедра
Доведення. Необхідність. Нехай чотирикутник – перетин даного тетраедра деякою площиною . Проведемо – перпендикуляри до площи-ни . Розглянемо «фрагмент» – перетин ребра площиною (див. рис. 2.2).
Рис 2.2 До доведення теореми Менелая
Трикутники та подібні, тому .
Трикутники та подібні, тому .
Трикутники та подібні, тому .
Трикутники та подібні, тому .
Перемножуючи знайдені пропорції, приходимо до рівності:
.
Достатність. Припустимо, що виконується співвідношення (2.1), але точки не лежать в одній площині. Проведемо через точки площину , що перетинає ребро в деякій точці , відмінної від . Тому ,
отже, співвідношення (2.1) для точок виконуватися не буде. Оскільки ми прийшли до протиріччя з вихідною умовою (не виконується рівність (2.1)), то наше припущення невірне й площина пройде через точку .
Теорема доведена.
Наведемо застосування цієї теореми до розв’язання стереометричних задач.
Задача 2.1 У тетраедрі точки належать ребрам і відповідно (див. рис. 2.3), причому і . Через точки проведена площина . У якому відношенні ця площина поділяє об’єм тетраедра?
Рис. 2.3 До задачі 2.1
Розв’язок. Нехай площина перетинає ребро в точці . Чотирикутник – переріз даного тетраедра площиною . Визначимо, у якому відношенні точка поділяє ребро . На підставі співвідношення (2.1) та умови задачі маємо
,
звідки .
У багатограннику проведемо переріз через ребро і вершину . Цей переріз розбиває розглянутий багатогранник на трикутну піраміду і чотирикутну піраміду , яка діагональним перерізом розбивається на дві трикутні піраміди: .
Нехай – площа грані , – довжина висоти тетраедра, проведена з вершини , – об’єм даного тетраедра. Визначимо об’єми трьох отриманих вище трикутних пірамід. Для піраміди :
де – довжина висоти трикутної піраміди , проведена з вершини на площину грані ( ). Тоді
Нехай далі – площа грані , – довжина висоти даного тетраедра, проведена з вершини на площину грані . Тоді
де – довжина перпендикуляра, проведеного з вершини на площину грані ( ) і
Знайдемо тепер об’єм багатогранника :
Отже, .
У такий спосіб шукане відношення дорівнює 23:40.
Відповідь: 23:40.
Задача 2.2. Об’єм тетраедра дорівнює 5. Через середини ребер проведена площина, яка перетинає ребро в точці . При цьому відношення довжини відрізка до довжини відрізка дорівнює . Знайдіть площу перерізу тетраедра зазначеною площиною, якщо відстань до неї від вершини дорівнює 1.
Рис. 2.4 До задачі 2.2
Розв’язок.
Нехай і – середини ребер відповідно і .
Чотирикутник – заданий за умовою переріз. На підставі теореми Менелая
,
,
звідки .
З'єднаємо точки і , і , і .
Нехай і довжина висоти тетраедра, проведена з вершини На рисунку не наведено), дорівнює . Згідно з умовою задачі . Висота піраміди , проведена з вершини дорівнює .
Знайдемо тепер об’єм піраміди :
Далі нехай і довжина висоти тетраедра, проведена з вершини на грань дорівнює . Тоді об’єм піраміди дорівнює
.
З іншої сторони (враховуючи, що відстань від вершини до площини перерізу за умовою задачі дорівнює 1), маємо
Отже, .
Відповідь: 3.
Задача 2.3 В піраміді проведений переріз так, що точка лежить на ребрі точка – на ребрі , точка – на ребрі , точка – на ребрі . Відомо, що , .
Знайти відношення об’ємів частин, на які площина поділяє піраміду.
Рис 2.5 До задачі 2.3
Розв’язок.
З умови задачі безпосередньо випливає, що
(2.3.1)
(2.3.2)
Нехай , .
Згідно з теоремою Менелая маємо
Враховуючи (2.3.1) і (2.3.2) й прийняті вище позначення одержуємо
,
звідки (2.3.3)
Розділивши обидві частини останньої рівності з умови задачі на , одержуємо
або
(2.3.4)
З (2.3.3) і (2.3.4) складаємо систему
Розв’язуємо цю систему:
і
Розбиваємо багатогранник на три трикутні піраміди: , .
Нехай – площа трикутника , – довжина висоти даної піраміди, проведена з вершини , – об’єм даної піраміди, – довжина висоти піраміди , проведена з вершини . Тоді маємо
Нехай – площа грані , – довжина висоти даної піраміди, проведена з вершини на площину грані , – довжина перпендикуляра, опущеного з точки на площину грані . Тоді маємо
Знайдемо об’єм багатогранника :
Отже, .
Таким чином, шукане відношення дорівнює 17:18.
Відповідь: 17:18.
Задача 2.4 Задана піраміда , основа якої має форму опуклого чотирикутни-ка зі взаємно перпендикулярними діагоналями і . Основа перпендикуляра, опущеного з вершини на основу піраміди, збігається з точкою – перетином діагоналей і . Довести, що основи перпендикулярів, опущених із точки на бічні грані піраміди, лежать на одному колі.
Рис. 2.6 До задачі 2.4
Розв’язок.
Нехай – перпендикуляр до площини , – перпендикуляр до площини , – перпендикуляр до площини . Покажемо, наприклад, що точка – ортоцентр грані . В площині грані проведемо промінь до перетину з ребром в точці . Згідно з умовою, і . Тому .
Згідно з теоремою про три перпендикуляри ( , – похила, –її проекція на ) маємо, що . Аналогічно доводиться, що . Отже, точка – ортоцентр грані .
Аналогічно доводиться, що точки і також є ортоцентрами відповідних граней.
З'єднаємо точки і . Згідно з теоремою про три перпендикуляри . З'єднаємо точки і . Згідно з теоремою про три перпендикуляри .
Оскільки з точки в грані на можна провести тільки один перпендикуляр, то відрізок пройде через точку . Отже, висоти, проведені в гранях і з вершин і на ребро , проходять через точки і відповідно і перетинають ребро в точці .
Аналогічно доводиться, що висоти граней і , проведені з вершин і на ребро , проходять через точки і відповідно і попадають в ту саму точку на ребрі .
Розглянемо трикутник , у якому і (див. рис 2.7)
Рис 2.7
Нехай і . Тоді і .
З :
; ; .
З :
; ; .
Аналогічно розглянемо , нехай (див. рис. 2.8).
Рис 2.8
З ; ;
З ; ;
Точки і належать відповідно ребрам і тетраедра . Розглянемо добуток
З того, що розглянутий добуток дорівнює 1, випливає, що точки і належать однієї площини (назвемо неї ). Побудуємо на , як на діаметрі сферу (на рисунку не наведено). Оскільки , то вершини цих кутів лежать на побудованій сфері. А так як точки і належать також площині , то ці точки лежать на перетині площини зі сферою тобто на колі.
Задачі для самостійної роботи
Задача 2.5 В тетраедрі через середини та ребер та проведена площина, яка перетинає ребра та відповідно в точках та . Площа чотирикутника дорівнює 16, а відношення довжини відрізка до довжини відрізка дорівнює 0,5. Обчислити відстань від вершини до площини , якщо об’єм багатогранника дорівнює 8.
Розв’язок.
Дата: 2019-05-28, просмотров: 256.