Размещения, перестановки, сочетания
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Пусть у нас есть множество из трех элементов . Какими способами мы можем выбрать из этих элементов два? .

Определение. Размещениями множества из различных элементов по элементов называются комбинации, которые составлены из данных элементов по элементов и отличаются либо самими элементами, либо порядком элементов.

Число всех размещений множества из элементов по элементов обозначается через (от начальной буквы французского слова “arrangement”, что означает размещение), где и .

Теорема. Число размещений множества из элементов по элементов равно

Доказательство. Пусть у нас есть элементы . Пусть — возможные размещения. Будем строить эти размещения последовательно. Сначала определим — первый элемент размещения. Из данной совокупности элементов его можно выбрать различными способами. После выбора первого элемента для второго элемента остается способов выбора и т.д. Так как каждый такой выбор дает новое размещение, то все эти выборы можно свободно комбинировать между собой. Поэтому имеем:

Пример. Сколькими способами можно составить флаг, состоящий из трех горизонтальных полос различных цветов, если имеется материал пяти цветов?

Решение. Искомое число трехполосных флагов:

Определение. Перестановкой множества из элементов называется расположение элементов в определенном порядке.

Так, все различные перестановки множества из трех элементов — это

Очевидно, перестановки можно считать частным случаем размещений при .

Число всех перестановок из элементов обозначается (от начальной буквы французского слова “permutation”, что значит “перестановка”, “перемещение”). Следовательно, число всех различных перестановок вычисляется по формуле

Пример. Сколькими способами можно расставить 8 ладей на шахматной доске так, чтобы они не били друг друга?

Решение. Искомое число расстановки 8 ладей

по определению!

Определение. Сочетаниями из различных элементов по элементов называются комбинации, которые составлены из данных элементов по элементов и отличаются хотя бы одним элементом (иначе говоря, -элементные подмножества данного множества из элементов).

Как видим, в сочетаниях в отличие от размещений не учитывается порядок элементов. Число всех сочетаний из элементов по элементов в каждом обозначается (от начальной буквы французского слова “combinasion”, что значит “сочетание”).

Числа

Все сочетания из множества по два — .

.

Свойства чисел

1. .

Действительно, каждому -элементному подмножеству данного элементного множества соответствует одно и только одно -элементное подмножество того же множества.

2. .

Действительно, мы можем выбирать подмножества из элементов следующим образом: фиксируем один элемент; число -элементных подмножеств, содержащих этот элемент, равно ; число -элементных подмножеств, не содержащих этот элемент, равно .

Треугольник Паскаля

В этом треугольнике крайние числа в каждой строке равны 1, а каждое не крайнее число равно сумме двух чисел предыдущей строки, стоящих над ним. Таким образом, этот треугольник позволяет вычислять числа .

.

Теорема.

Доказательство. Рассмотрим множество из элементов и решим двумя способами следующую задачу: сколько можно составить последовательностей из элементов данного
множества, в каждой из которых никакой элемент не встречается дважды?

1 способ. Выбираем первый член последовательности, затем второй, третий и т.д. член

2 способ. Выберем сначала элементов из данного множества, а затем расположим их в некотором порядке


Домножим числитель и знаменатель этой дроби на :

Пример. Сколькими способами можно в игре “Спортлото” выбрать 5 номеров из 36?

Искомое число способов

Классическое определение вероятности

Раздел математики, изучающий закономерности случайных событий, называется теорией вероятностей.

Вероятностью Р(А) события А в испытании с равновозможными элементарными исходами называют отношение числа исходов m, благоприятствующих событию А, к числуn всех исходов испытания.

Пример 1: В партии из 30 миксеров 2 бракованных. Найти вероятность купить исправный миксер.

Аксиомы вероятностей:

Каждому событию А поставлено в соответствие неотрицательное число Р(А), называемое вероятностью события А.

Если события А1, А2 … попарно несовместны, то Р(А12+…)=Р(А1)+Р(А2)+…

Свойства вероятностей:

Вероятность невозможного события равна нулю Р=0.

Вероятность достоверного события равна единице Р=1.

Вероятность произвольного случайного события А заключается между 0 и 1: 0<Р(А)<1.

Пример 2: Из 34 экзаменационных билетов, пронумерованных с помощью чисел от 1 до 34, наудачу извлекается один. Какова вероятность, что номер вытянутого билета есть число, кратное трем.

Решение: Найдем количество чисел от 1 до 34, кратных трем. Это числа 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33. Всего таких чисел 11. Таким образом, искомая вероятность

События А и В называются совместными, если они могут одновременно произойти, и несовместными, если при осуществлении одного события не может произойти другое.

События А и В называются независимыми, если вероятность наступления одного события не зависит от того, произошло другое событие или нет.

Вероятность суммы двух совместных событий равна сумме вероятностей слагаемых без вероятности произведения: Р(А+В)=Р(А)+Р(В)-Р(АВ)

Пример 3: Вероятность поражения одной мишени – 0,7, а другой – 0,8. Какова вероятность, что будет поражена хотя бы одна мишень, если по ним стреляют независимо друг от друга.

Решение: Т.к. события совместны, то

Вероятность суммы двух несовместных событий равна сумме вероятностей слагаемых: Р(А+В)=Р(А)+Р(В).

Р(А)+Р( )=1

Условная вероятность – вероятность одного события, при условии, что другое событие уже произошло.

Вероятность произведения событий А и В равна произведению вероятности одного из них на условную вероятность другого: Р(АВ)=Р(А)∙Р(А/В) или Р(ВА)=Р(А)∙Р(В/А)

Вероятность произведения двух независимых событий А и В равна произведению вероятностей сомножителей: Р(АВ)=Р(А)∙Р(В).

    Пример 4: В двух коробках лежат ручки разного цвета. В первой коробке – 4 красных и 6 черных, во второй – 3 красных, 5 синих и 2 черных. Из обеих коробок вынимают по одной ручки. Найти вероятность, что обе ручки красные.

Решение: Найдем вероятности вытащить красную ручку из каждой коробки

Тогда вероятность того, что обе ручки красные:

 

Полная вероятность. Формула Байеса

Если событие А может произойти только при выполнении одного из событий Н1, Н2, …, которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

Эта формула называется формулой полной вероятности.

 

Если выполняются все условия, имеющие место для формулы полной вероятности, и , то выполняется равенство, называемое формулой Байеса:

 

Пример 1: В первой партии 20 ламп, во второй – 30 ламп и в третьей – 50 ламп. Вероятности того, что проработает заданное время, равна для первой партии 0,7, для второй – 0,8 и для третьей партии – 0,9. Какова вероятность того, что наудачу взятая лампа проработает заданное время? Найти вероятность, что эта лампа принадлежит первой партии?

 

Решение: Пусть событие А – наудачу взятая лампа проработает заданное время.

 

Тогда, пусть Н1 – лампа из первой партии, Н2 – лампа из второй партии и Н3 – лампа из третьей партии. Тогда событие А/Н1 – лампа из первой партии проработает заданное время, А/Н2 – лампа из второй партии проработает заданное время и А/Н3 – лампа из третьей партии проработает заданное время. Найдем вероятности

Теперь, используя формулу Байеса найдем вероятность того, что эта лампа принадлежит первой партии

Пример 2: Имеются 3 одинаковые урны. В первой урне находятся 5 белых и 7 черных шаров, во второй – только белые и в третьей – только черные. Наугад выбираются урна и из нее извлекается один шар. Какова вероятность, что этот шар белый?

Решение: Пусть событие А – извлекается белый шар.

Тогда, пусть Н1 – шар из первой урны, Н2 – шар из второй урны и Н3 – шар из третьей урны. Тогда событие А/Н1 – белый шар из первой урны, А/Н2 – белый шар из второй урны и А/Н3 – белый шар из третьей урны. Найдем вероятности

Формула Бернулли

1) Вероятность того, что событие А наступит ровно m раз при проведении n независимых испытаний, каждый из которых имеет ровно два исхода вычисляется по формуле Бернулли

Пример 1: Вероятность выигрыша по одному лотерейному билету равна 0,2. Найти вероятность, что из 6 приобретенных билетов 2 окажутся выигрышными.

Решение:

2) Вероятность наступления события А хотя бы один раз при проведении n независимых испытаний, удовлетворяющих схеме Бернулли, равна

Пример 2: Прибор состоит из шести элементов, работающих независимо друг от друга. Вероятность безотказной работы каждого элемента за определенное время равна 0,6. Для безотказной работы прибора необходимо, чтобы хотя бы один элемент был исправен. Какова вероятность, что за данное время прибор будет работать безотказно?

Решение:

3) Вероятность наступления события А хотя бы один раз при проведении n независимых испытаний, удовлетворяющих схеме Бернулли, наступит не менее m1 и не более m2 раз вычисляется по формуле

Пример 3: Найти вероятность осуществления от двух до четырех разговоров по телефону при наблюдении пяти независимых вызовов, если вероятность того, что разговор состоится, равна 0,7.

Решение:

4) Наивероятнейшее значение m0 числа наступления события А при проведении n повторных независимых испытаний, удовлетворяющих схеме Бернулли, вычисляется по формуле

Пример 4: Магазин получил 50 деталей. Вероятность наличия нестандартной детали в партии равна 0,05. Найти наиболее вероятное число нестандартных деталей в партии.

Решение:

Дискретная случайная величина и ее числовые характеристики

Случайная величина Х – это числовая функция , определенная на пространстве элементарных событий. Случайные величины, имеющие счетные множества возможных значений, называются дискретными. Дискретная случайная величина определена, если известны все ее значения и соответствующие им вероятности. Соотношение между возможными значениями случайной величины и соответствующими им вероятностями называют распределением вероятностей случайной величины. Для дискретной случайной величины это соответствие может быть записано в виде таблицы:

xi x1 x2 xn
pi p1 p2 pn

 

Математическим ожиданием (средним значением) дискретной случайной величины Х называют сумму произведений всех ее возможных значений на соответствующие им вероятности

Дисперсией дискретной случайной величины Х называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания . Дисперсия дискретной случайной величины вычисляется по формулам:

Средним квадратичным отклонением дискретной случайной величины называют корень квадратный из дисперсии .

Если случайная величина Х имеет биномиальное распределение вероятностей, то

Пример 1: Случайная величина Х задана таблицей распределения вероятностей. Найти М(Х), D(Х), σ(Х).

хi 2 5 8 9
рi 0,1 0,4 0,3 0,2

Решение:

Пример 2: Найти математическое ожидание и дисперсию числа лотерейных билетов, на которые выпадут выигрыши, если приобретено 100 билетов, а вероятность выигрыша на каждый билет равна 0,05.

Решение:

 


Литература

Основные источники

1. Григорьев С.Г., Иволгина С.В. Математика. – М.: Образовательно-издательский центр «Академия», 2011

2. Григорьев В.П., Сабурова Т.Н. Сборник задач по высшей математике. – М: Издательский центр «Академия», 2011

3. Богомолов Н.В. Практические занятия по математике. – М.: Высшая школа, 2009

4. Дадаян А.А. Математика: учеб.- М.: ФОРУМ: ИНФРА-М, 2005

Дополнительные источники

1. Высшая математика для экономистов. Под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2007

2. Математика и информатика: учебник для студ. учреждений сред. проф. образования / Виноградов Ю.Н., Гомола А.И., Потапов В.И., Соколова Е.В./ - М.: Издательский центр «Академия», 2009

3. Математика для профессий и специальностей социально-экономического профиля: учебник для образовательных учреждений нач. и сред. образования / В.А. Гусев, С.Г. Григорьев, С.В. Иволгина. – М.: Издательский центр «Академия», 2011

4. Спирина М.С. дискретная математика: учеб. – М.: Издательский центр «Академия», 2006

5. Омельченко В.П. Математика. – Ростов-на-Дону.: Феникс, 2006

 

 

Дата: 2019-04-23, просмотров: 294.