Гипоталамо-гипофизарная система
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Гипоталамо-гипофизарная система определяет функциональное состояние всей эндокринной системы. Анатомическая и функциональная взаимосвязь гипоталамуса и гипофиза обеспечивает также единение нервной и эндокринной систем.

Гипоталамус (подбугорье) занимает часть промежуточного мозга книзу от таламуса под гипоталамической бороздкой и представляет собой скопление нервных клеток с многочисленными афферентными и эфферентными связями. Как вегетативный центр гипоталамус координирует функцию различных систем и органов, регулирует функцию желез внутренней секреции (гипофиза, яичников, щитовидной железы и надпочечников), обмена веществ (белкового, жирового, углеводного, минерального и водного), температурного баланса и деятельности всех систем организма (вегетососудистой, пищеварительной, выделительной, дыхательной и др.). Эта многогранная функция гипоталамуса обеспечивается нейрогормонами, поступающими в него через портальную систему сосудов после высвобождения из окончаний гипоталамических нервных волокон. Гипоталамические гормоны высвобождаются в пульсирующем режиме и контролируют функцию гипофиза, а их уровень в свою очередь определяется уровнем в крови гормонов периферических эндокринных желез, достигающих гипоталамуса, по принципу обратной связи (сигналами активации при недостатке гормонов или ингибирования при высоком их уровне).

По утвержденной Международной номенклатуре (1975) гипоталамические рилизинг-гормоны делятся по функциональному значению на люлиберины и статины (освобождающие и тормозящие). К настоящему времени известно 10 рилизинг-гормонов: ЛГРГ - люлиберин и ФСГРГ - фолиберин (гонадотропные либерины), КТГРГ - кортиколиберин, ТТГРГ - тиролиберин, СТГРГ - соматолиберин, ПРЛРГ - пролактолиберин, МСГРГ -меланолиберин, СИРГ - соматостатин, ПИФРГ - пролактостатин и МИФРГ - меланостатин.

Всего же нейроны гипоталамуса секретируют около 40 соединений, многие из которых выполняют роль синаптических модуляторов или медиаторов нейросекреторной функции гипоталамуса. В нем, в частности, локализуются вазопрессин, окситоцин, нейрофизин. В то же время биосинтез биологически активных пептидов происходит не только в гипоталамусе. Так, СТГРГ образуется в поджелудочной железе, слизистой оболочке кишечника и в церебральных нейросекреторных клетках, а ТТГРГ - и в других отделах ЦНС.

Гонадотропин - рилизинг-гормоны (ЛГРГ и ФСГРГ) полипептидной природы (декапептид) отдельно не выделены. Они стимулируют секрецию гипофизом гонадотропных гормонов, которые влияют на яичники, что сопровождается циклическими изменениями в половых органах-мишенях. Синтезирован люлиберин (ЛГРГ) для клинического применения. Он индуцирует половое созревание, либидо, потенцию, овуляцию или сперматогенез. Люлиберин оказывает выраженное влияние на половое поведение животных, воздействуя на сексуальные центры ЦНС.

Кортикотропный рилизинг-гормон (КТГРГ) - кортиколиберин, локализуется в основном в задней доле гипоталамуса и регулирует функцию коры надпочечников, используется в клинической практике.

ТТГРГ - тиролиберин (ТЛ), оказывая выраженное действие по освобождению АКТГ, также способствует выделению липотропина, меланоцитстимулирующего гормона и эндорфинов. Он выделен в чистом виде и синтезирован, обладает выраженным ТТГ-освобождающим эффектом, активно влияет на поведенческие реакции, усиливает двигательную активность, проявляет депрессивные эффекты. Наряду с гормональными эффектами ТЛ выступает и в роли нейротрансмиттера. Тиролиберин влияет на секрецию пролактина и стимулирует выделение гормона роста. С помощью пробы с тиролиберином осуществляются дифференциальная диагностика форм гипотиреоза первичного и вторичного генеза, различных причин галактореи, болезни Иценко-Кушинга.

Гормон роста рилизинг-гормон (СТГРГ) - соматолиберин наряду с другими функциями регулирует продукцию и выделение гормона роста.

Пролактин рилизинг-гормон (ПРЛРГ) - пролактолиберин (ПЛ) стимулирует секрецию пролактина гипофизом. Обнаружен в срединном возвышении, переднем гипоталамусе и экстрагипоталамических структурах. Химическая природа не установлена, и вопрос о его применении окончательно не решен.

Меланоцитстимулирующий рилизинг-гормон (МСГРГ) - меланолиберин (МЛ) влияет на функцию передней и промежуточной долей гипофиза, где экспрессируется ген по выработке и освобождению этого гормона или проопиомиеланокортина (ПОМК) в тканях (мозг, плацента, легкие, ЖКТ и др.) в различных вариантах.

Пролактинингибирующий рилизинг-гормон (ПРЛИГ-РГ), пролактостатин (ПРЛС) - гипоталамический пептидный фактор с пролактинингибирующими свойствами (ПИФ) и окончательно не выясненной структурой. Регуляция синтеза и секреции пролактина осуществляется гипоталамическими агентами. Дофамин тормозит синтез и секрецию пролактина. В последние годы открыт новый полипептид, обладающий одновременно гонадолибериновой и пролактостатической активностью. Его называют гонадолиберин ассоциированным (связанным) пептидом (ГАП) с мощными свойствами ингибирования секреции пролактина. Возможно, это и есть пролактостатин. На угнетение освобождения ПРЛ влияет соматостатин, который ингибирует активность тиролиберина по освобождению ТТГ.

Соматоингибирующий рилизинг-гормон (СИГРГ) - соматостатин обнаружен не только в гипоталамусе, но и в других отделах нервной системы, а также в периферических тканях (поджелудочная железа, желудочно-кишечный тракт). Кроме ингибирования секреции гормона роста соматостатин угнетает освобождение ТТГ, пролактина, инсулина и глюкагона.

Меланоцитингибирующий рилизинг-гормон (МИРГ) регулирует функцию промежуточной доли гипофиза.

Гипофиз обоснованно считается главной железой, вырабатывающей ряд гормонов, непосредственно воздействующих на периферические железы. Расположен он в гипофизарной ямке турецкого седла клиновидной кости и через ножку связан с мозгом. Кровоснабжение осуществляется таким образом, что кровь проходит через срединное возвышение гипоталамуса, обогащается рилизинг-гормонами и попадает в аденогипофиз. Железистые клетки вырабатывают ряд пептидных гормонов, непосредственно регулирующих функцию периферических желез. В нем выделяют переднюю долю - аденогипофиз и заднюю - нейрогипофиз. Промежуточная (средняя) часть гипофиза состоит из крупных секреторноактивных базофильных клеток.

В передней доле вырабатываются адренокортикотропный (АКТГ), тиреотропный (ТТГ), лютеинизирующий (ЛГ), фолликулостимулирующий (ФСГ), липотропный (ЛиГ), соматотропный (СТГ) гормоны и пролактин (ПРЛ). В промежуточной доле - меланоцитстимулирующий (МСГ), в задней - вазопрессин и окситоцин. Ранее все гормоны изучались по отдельности. Новые исследования механизма синтеза и внутриклеточных посредников их действия позволили объединить указанные гормоны в три общие группы: 1) гликопротеиновых гормонов; 2) пептидов семейства проопиомиеланокортина и 3) группу, включающую гормон роста, пролактин и хорионический соматомаммотропин.

Наиболее сложные из гормонов гипофиза - это гликопротеиновые гормоны (ТТГ, ЛГ, ФСГ). К этой группе относится также хорионический гонадотропин (ХГ) - гормон плаценты. Все они многосторонне влияют на различные патологические процессы, но имеют структурное сходство. Они взаимодействуют с рецепторами клеточной поверхности и активируют аденилатциклазу, повышая уровень цАМФ, который и является их внутриклеточным медиатором. Все гормоны данной группы образовались на основе общего гена-предшественника, давшего две субъединицы: α, определяющую межвидовые различия, и β, определяющую различие гормонов. Особенностью гликопротеиновых гормонов является гликозилирование их молекул. Молекулы гормонов синтезируются как препрогормоны, которые подвергаются в клетке дальнейшим изменениям с образованием глюкозилированных белков.

Гонадотропины (ФСГ, ЛГ, ХГ) обеспечивают гаметогенез и стероидогенез. ФСГ-фоллитропин связывается со специфическими мембранными рецепторами тканей-мишеней (фолликулярных клеток яичников и клеток Сертоли в семенниках).

После активации аденилатциклазы под влиянием ФСГ повышается уровень цАМФ. При этом активируется рост фолликулов, повышается их чувствительность к действию ЛГ, индуцирующему овуляцию, и усиливается секреция эстрогенов. Секретируется ФСГ циклически с пиком перед или во время овуляции (пик - десятикратное увеличение базального уровня).

Лютеинизирующий гормон (лютропин, ЛГ) стимулирует образование прогестерона клетками желтых тел и тестостерона клетками Лейдига. Предварительно из холестерола образуется 2α-гидроксихолестерол. Длительное воздействие ЛГ приводит к десенситизации рецепторов этого гормона, которые менее чувствительны по сравнению с рецепторами ФСГ.

Пик секреции ЛГ в середине цикла индуцирует овуляцию у женщин. Далее ЛГ поддерживает функцию желтого тела и продукцию прогестерона. После оплодотворения и имплантации яйцеклетки функция ЛГ переходит к гормону плаценты - хорионическому гонадотропину (ХГ).

Первые 6-8 недель беременность поддерживается желтым телом, затем плацента сама вырабатывает прогестерон в количестве, необходимом для беременности, при сохранении продукции ХГ. В интерстициальных клетках негормональных тканей яичника ЛГ может индуцировать образование ряда андрогенов и их предшественников (андростендиона, дегидроэпиандростерона, тестостерона). По последним данным, считается, что при синдроме склерополикистоза яичников (синдром Штейна-Левинталя) отмечается повышенный уровень ЛГ, увеличение продуктов андрогенов, снижение фертильности, увеличение массы тела и усиленный рост волос на теле и лице. Предполагается, что этот синдром обусловлен гиперактивностью яичниковой стромы.

Хорионический гонадотропин человека - это гликопротеин, синтезируемый клетками синцитиотрофобласта плаценты, похожий по структуре на ЛГ. Особый рост уровня гормона отмечается после имплантации, поэтому его определение лежит в основе многих методов диагностики беременности.

Регулируется секреция ФСГ и ЛГ стероидными половыми гормонами по классической схеме отрицательной обратной связи. Высвобождение ЛГ и ФСГ определяется ГнРГ-гонадолиберином, а последнего - тестостероном, эстрадиолом и эндорфином.

Тиреотропный гормон (ТТГ, тиреотропин) - гликопротеин, который путем увеличения количества цАМФ обеспечивает биосинтез тиреоидных гормонов (Т3, Т4), концентрирование и органификацию иодида, конденсацию йодтиронинов и гидролиз тиреоглобулина. Эти процессы происходят в течение нескольких минут. Длительные эффекты ТТГ в щитовидной железе определяют синтез белков, фосфолипидов и нуклеиновых кислот, увеличение размеров и количества тиреоидных клеток (что связано с образованием Т3 и Т4).

Секреция и высвобождение ТТГ в свою очередь регулируются тиреоидными гормонами (Т3 и Т4) и гипоталамическим тиролиберином.

Гормоны семейства пептидов-проопиомиеланокортинов (ПОМК) представлены группой активных веществ, действующих либо как гормоны, либо как нейромедиаторы или нейромодуляторы. Пептиды ПОМК делятся на три группы: 1) АКТГ, из которого могут образоваться меланоцитстимулирующий гормон (α-МСГ) и кортикотропиноподобный пептид; 2) β-липотропин (β-ЛПГ), служащий предшественником α-липотропина, β-МСГ, а, β\ γ-эндорфинов; 3) γ-МСГ.

ПОМК синтезируется в 50% клеток передней доли гипофиза и во всех клетках промежуточной, но регуляция этого процесса по долям различается. В передней доле высвобождение ПОМК регулируется кортиколиберином, а ингибируется глюкокортикоидами, которые подавляют секрецию АКТГ. Кортиколиберин не влияет на промежуточную долю. Высвобождение ПОМК в промежуточной доле стимулируется серотонином и β-адренергическими агентами (агонистом дофамина - эргокриптином) и ингибируется антагонистом дофамина - галоперидопом.

В других тканях регуляция биосинтеза и высвобождения ПОМК изучена недостаточно. Не влияют на эти процессы глюкокортикоиды, кортиколиберин, адреналоэктомия и гипофизэктомия. Стресс уменьшает выработку β-эндорфина в гипоталамусе, а эстрогены увеличивают высвобождение β-эндорфина из гипоталамуса.

Адренокортикотропный гормон (АКТГ) - полипептид, регулирующий рост и функцию коры надпочечников. Он имеет межвидовое тождество. В частности, из 39 аминокислот пептиды 24 у разных видов тождественны, что широко используется для диагностики и лечения. АКТГ повышает синтез и секрецию стероидов надпочечников, усиливая превращение холестерола в прегненолон (предшественника всех стероидов надпочечников). Длительное применение АКТГ приводит к избыточному образованию глюкокортикоидов, минералокортикоидов и дегидроэпиандростерона - предшественника андрогенов. Проявляя трофический эффект, АКТГ повышает синтез белка и РНК. Это происходит благодаря увеличению уровня цАМФ после контакта АКТГ с рецепторами плазматических мембран, что приводит к активации аденилатциклазы. В жировых клетках АКТГ активирует липазу и усиливает гликолиз, что осуществляется с участием кальция. В больших дозах АКТГ стимулирует также секрецию инсулина в поджелудочной железе. Регуляция образования АКТГ из белка - предшественника ПОМК и его секреции осуществляется по принципу обратной связи глюкокортикоидами и кортиколиберином. Интегрирующая роль при этом выполняется центральной нервной системой с помощью нейромедиаторов (норадреналин, серотонин, ацетилхолин). Именно они опосредуют стрессорную реакцию со стороны АКТГ по стимуляции глюкокортикоидов, необходимых для адаптации таких воздействий, как хирургическая операция, гипогликемия, физическая или эмоциональная травма, эффекты холода и пирогенов.

β-липотропин (β-ЛПГ) как производное ПОМК содержит β-МСГ, метэнкефалин, β-эндорфины. В гипофизе человека найдены β-липотропин, γ-миотропин и β-эндорфин; β-МСГ не обнаружен, β-липотропин стимулирует липолиз и мобилизацию жирных кислот и является лимитирующим предшественником β-эндорфина.

Эндорфины-пептиды содержатся в гипофизе в ацетилированной (неактивной) форме. В центральной нервной системе они присутствуют в немодифицированной (активной) форме и выступают как нейромодуляторы или нейрорегуляторы. Связываются они с теми же рецепторами, что и морфиновые опиаты.

Меланоцитстимулирующий гормон (МСГ) активирует меланогенез. Три разновидности МСГ содержатся в составе ПОМК. При низком уровне глюкокортикоидов (болезнь Аддисона) отмечается усиленная пигментация кожи, что связано с повышенной активностью МСГ в плазме, хотя после рождения у людей МСГ не обнаружен.

Группа гормонов (гормон роста (ГР), пролактин (ПРЛ), хорионический соматомаммотропин и плацентарный лактоген - ХС, ПЛ) гомологичны по своей структуре. ГР и ХС человека гомологичны на 85%, ГР и ПРЛ - на 35%. Они объединяются также лактогенной и ростстимулирующей активностью. Продуцируются только определенными тканями: ГР и ПРЛ - передней долей гипофиза, ХС - синцитиотрофобластными клетками плаценты. Секретируются по собственному регуляторному механизму. Есть несколько генов в хромосоме 17 для ГР и ПС и один для ПРЛ в хромосоме 6.

Систему регуляции роста представляют основные звенья - соматолиберин и соматостатин, а также инсулиноподобный фактор роста (ИФР-1), который образуется в печени. ИФР-1 регулирует секрецию ГР, подавляя высвобождение соматолиберина и стимулируя высвобождение соматостатина. ГР необходим для постнатального роста и для нормализации углеводного, липидного, азотного и минерального обменов. ГР стимулирует транспорт аминокислот в мышечные клетки, синтез белка и снижает содержание аминокислот и мочевины в плазме и моче. Все это сопровождается повышением уровня синтеза РНК и ДНК в отдельных тканях. На углеводный обмен ГР влияет противоположно инсулину. При длительном введении ГР существует опасность возникновения сахарного диабета. ГР влияет на минеральный обмен, стимулируя рост костей и образование хряща. Этот гормон обладает и свойствами ПРЛ, способствует развитию молочных желез, лактогенезу.

Пролактин (ПРИ: лактогенный гормон, маммотропин и лютеотропный гормон) секретируется лактофорами - ацидофильными клетками передней доли гипофиза. Продукция ПРЛ находится под контролем пролактостатина, который по структуре подобен дофамину. Некоторые считают, что дофамин и есть пролактинингибирующий фактор (ПИФ). Сомнительным считается наличие пролактолиберина. Возрастает уровень ПРЛ во время беременности, при стрессе, сексуальных контактах и во время сна, гормон способствует инициации и поддержанию лактации.

Хорионический соматомаммотропин (ХС: плацентарный лактоген) проявляет лактогенную и лютеотропную активность, а по метаболическим эффектам сходен с ГР. ХС поддерживает рост и развитие плода. Синтезируется клетками синцитиотрофобласта, но в эту группу относится по сходству структуры и характера действия с ПРЛ и ГР.

Задняя доля гипофиза содержит два активных гормона - вазопрессин и окситоцин. Вазопрессин (иначе антидиуретический гормон - АДГ) способен повышать артериальное давление, стимулирует реабсорбцию воды в дистальных почечных канальцах. Специфическим эффектом второго гормона - окситоцина является ускорение родов из-за усиления сокращений мышц матки. Оба гормона образуются в гипоталамусе, затем с аксонплазматическим током переносятся в нервные окончания задней доли гипофиза, из которых секретируются в кровоток при соответствующей стимуляции, минуя гематоэнцефалический барьер. АДГ синтезируется преимущественно в супраоптическом ядре, окситоцин - в паравентрикулярном. Оба переносятся со специфическим белком-переносчиком - нейрофизином I и II типа. Оба гормона имеют короткий период полужизни (2-4 мин). Метаболизм их осуществляется в печени. При многих факторах, способствующих выделению окситоцина, высвобождается пролактин, поэтому окситоцин считается пролактинрилизинг-фактором.

Главный эффект АДГ - повышение осмоляльности плазмы, что опосредуется осморецепторами в гипоталамусе к барорецепторам в сердечнососудистой системе. Выделение АДГ регулируется многими факторами (гемодилюцией, эмоциональным и физическим стрессом, уровнем АД). Адреналин, как и этанол, подавляет секрецию АДГ. Органом-мишенью для АДГ являются почки (клетки дистальных извитых канальцев и собирательных трубочек почек).

Основным физиологическим и фармакологическим свойством окситоцина является способность вызывать сокращения гладкой мускулатуры небеременной, беременной матки и особенно во время родов. Увеличение частоты, интенсивности и длительности сокращений связывается со снижением мембранного потенциала клеток. Эффективность дозы гормона определяется функциональным состоянием' матки (небеременная, беременная в разные сроки). В последние 4 недели беременности чувствительность матки к окситоцину многократно возрастает, хотя и отмечаются индивидуальные различия. Окситоцин обладает и вторым свойством - способностью вызывать сокращения миоэпителиальных элементов альвеол мелких протоков молочной железы, т. е. способствует процессу лактации, улучшая продвижение в крупные протоки и молочные синусы молока, секретируемого под воздействием пролактина.

Заболевания, связанные с патологией гипоталамо-гипофизарной системы, самые многочисленные в эндокринологии и специфичны по каждому гормону. Недостаточность или отсутствие ГР, обусловленные пангипопитуитаризмом, особенно опасны у детей, так как нарушают их способность к нормальному росту и приводят к различным видам карликовости. Избыток же этого гормона способствует развитию гигантизма, а у взрослых - акромегалии.

Низкий уровень глюкокортикоидов обусловливает развитие болезни Аддисона. Избыточное же образование АКТГ гипофизом или его эктопическая продукция проявляются синдромом Иценко-Кушинга со множеством метаболических нарушений: отрицательный азотный, калиевый и фосфорный баланс; задержка натрия, нередко сопровождающаяся повышением АД и развитием отеков; изменение толерантности к глюкозе или сахарный диабет; повышение уровня жирных кислот в плазме; эозинопения, лимфоцитопения с увеличением количества полиморфноядерных лейкоцитов. Отсутствие АКТГ при опухоли или инфекции гипофиза вызывает противоположные состояния.

Длительное повышение секреции ПРЛ приводит к развитию синдрома персистируюшей галактореи-аменореи. Это может быть и при нормальном уровне ПРЛ в сыворотке крови, и при чрезмерно высокой его биологической активности. У мужчин гиперсекреция ПРЛ сопровождается развитием импотенции, гинекомастии с галактореей Хроническая гиперпродукция ПРЛ может быть основным патогенетическим звеном самостоятельного гипоталамо-гипофизарного заболевания, а также следствием ряда эндокринных и неэндокринных заболеваний с вторичным вовлечением в процесс гипоталамо-гипофизарной системы.

Нарушение секреции или действия АДГ приводит к несахарному диабету с выделением больших объемов разведенной мочи. При наследственном нефрогенном несахарном диабете уровень АДГ может быть нормальным, но клетки-мишени не реагируют на него. Синдром избыточной секреции АДГ развивается при эктопическом образовании гормона различными опухолями (чаше опухоли легких) и сопровождается задержкой мочеотделения в условиях гипоосмоляльности при устойчивой и прогрессирующей гипонатриемии и повышенном содержании натрия в моче.

Синдром "пустого турецкого седла" (ПТС) определяет различные нозологические формы, общим признаком которых является расширение субарахноидального пространства в интерселлярную область при увеличенном турецком седле. Синдром ПТС может развиваться вторично после оперативных вмешательств и первично без таковых. Синдром может протекать бессимптомно (случайные находки) или с разнообразными клиническими проявлениями (головные боли, нарушение зрения, гиперпролактинемия и др.).

Патология гипоталамо-гипофизарной области приводит также к различным гинекологическим заболеваниям (аменорея, нейроэндокринные синдромы). Так, при пангипопиуитризме может развиться синдром Шихена, когда при отсутствии гипофизарного уровня регуляции нарушается функция всех периферических эндокринных желез, или болезнь Симмондса - синдром гипоталамо-гипофизарной кахексии.

Половые железы женщин

Яичники являются важнейшим звеном регуляции генеративной Функции у женщин. В них образуются яйцеклетки и половые гормоны. В среднем яичники имеют размеры 3×2×1,5 см. Снаружи они окружены поверхностным кубическим (зародышевым) эпителием, под которым расположена соединительнотканная белочная оболочка. Под ней находится корковый слой - основная гормонопродуцирующая и активная часть. В нем среди соединительнотканной стромы залегают фолликулы. Основная их масса - примордиальные фолликулы, представляющие собой яйцеклетку, окруженную одним слоем фолликулярного эпителия. В репродуктивный период в яичниках совершаются циклические изменения: созревание фолликулов, их разрыв с выходом зрелой яйцеклетки, овуляция, образование желтого тела и его обратное развитие (при отсутствии беременности).

Обе функции яичников по продуцированию зародышевых клеток и гормонов тесно взаимосвязаны, поскольку для развития зародышевых клеток требуется высокая концентрация гормонов. Яичники продуцируют много стероидов, но лишь некоторые из них обладают гормональной активностью. Образование этих гормонов строго регулируется системой по принципу обратной связи, включающей в себя гипофиз и гипоталамус, а действие их опосредовано ядерными механизмами.

В яичниках продуцируются эстрогены и прогестины (гестагены), а также андрогены. Наиболее активные гормоны, вырабатываемые в яичниках, 17β-эстрадиол 2) и прогестерон.

Эстрогены образуются путем ароматизации андрогенов и в результате сложного процесса, включающего три этапа гидроксилирования, из тестостерона синтезируется эстрадиол, а из андростендиона - эстрон. Тестостерон служит непосредственным предшественником половых стероидов. Превращение прегненолона в тестостерон может происходить по прогес-тероновому и по дегидроэпиандростероновому путям.

В образовании гормонов участвуют различные клетки яичников: 17α-гидроксипрогестерон и андростендион в клетках теки, эстрадиол в клетках гранулезы, прогестерон в желтом теле, в котором вырабатывается и немного эстрадиола. У женщин важным источником эстрогенов служат андрогены надпочечников. Ароматизация андрогенов происходит не только в яичниках (семенниках), но и в жировой ткани, печени, коже и др.

Метаболитами эстрогенов являются катехол-эстрогены, которые обладают слабой эстрогенной насыщенностью, но высокой активностью в ЦНС, где они также обнаруживаются (метаболизм совершается путем гидроксилирования ароматического кольца).

Уровень секреции гормонов меняется по фазам цикла, они секретируются по мере синтеза (но не накапливаются). Эстрогены и прогестины связываются в разной степени с транспортными белками плазмы; эстрогены - с СГСГ (сексгормонсвязывающий глобулин), прогестины - с КСГ (кортикостероидсвязывающий глобулин). Сродство СГСГ к эстрадиолу в пять раз ниже, чем к тестостерону, и еще ниже к прогестерону. Биологической активностью обладает только свободная форма гормонов. Связывающие белки обеспечивают определенный резерв гормонов.

В печени эстрадиол и эстрон превращаются в эстриол. Все три эстрогенных соединения (Э1, Э2, Э3) с помощью печеночных ферментов присоединяют глюкуронидную или сульфатную группу и в таком конъюгированном виде становятся водорастворимыми, не способными связываться с транспортными белками, легко выделяются с желчью, калом и мочой. Прогестерон метаболизируется также в печени, образуя ряд соединений, основным из которых является прегнандиол-20 - глюкуронид натрия, обнаруженный в моче.

Основная функция яичниковых гормонов - подготовка женской половой системы к размножению, включающая: 1) созревание примордиальных зародышевых клеток; 2) развитие тканей, необходимых для имплантации бластоцисты; 3) обеспечение гормонального контроля времени овуляции; 4) обеспечение с помощью гормонов яичников и плаценты гомеостаза, необходимого для поддержания беременности; 5) обеспечение гормональной регуляции родов и лактации.

Эстрогены стимулируют развитие тканей, участвующих в размножении: повышают скорость биосинтеза белка, рРНК, тРНК, мРНК и ДНК. Эстрогенная стимуляция обусловливает пролиферацию и дифференцировку влагалищного эпителия, пролиферацию и гипертрофию эндометрия, появление ритмической активности миометрия и пролиферацию протоков молочных желез. Эстрогены оказывают также анаболическое действие на кости и хрящи, способствуя таким образом их росту, расширяют периферические кровеносные сосуды, улучшая микроциркуляцию и усиливая теплоотдачу.

Для проявления действия прогестерона необходимо предварительное или одновременное влияние эстрогенов. Прогестины уменьшают стимулирующее действие эстрогенов на пролиферацию эпителия влагалища и способствуют переходу эпителия матки из пролиферативной фазы в секреторную, подготавливая его к имплантации оплодотворенной яйцеклетки. Они снижают периферический кровоток, уменьшая теплоотдачу и повышая температуру тела (на 0,5 °С).

У плода к 5-му месяцу имеется 6-7 млн оогониев, к рождению количество их снижается до 2 млн, к первому году - до 300-400 тысяч, к менархе - до 200-400 тысяч, из них превращаются в зрелые ооциты лишь 400-500.

Созревание фолликулов начинается в младенческие годы и продолжается в препубертатном периоде. Яичники увеличиваются за счет возрастания объема фолликулов и роста гранулезы, накопления ткани атрезированных фолликулов и увеличения медуллярной стромальной ткани с клетками интерстициальной ткани и теки, продуцирующих гормоны.

В детстве концентрация половых стероидных гормонов низкая, может увеличиваться под влиянием вводимых гонадотропинов. В период полового созревания начинается импульсная секреция гонадотропинов и гонадолиберинов: под влиянием ЛГ повышается уровень яичниковых гормонов, а под влиянием ФСГ - созревание фолликулов и наступление овуляции. У неполовозрелых девочек стероиды подавляют секрецию гонадотропинов, а в половозрелом возрасте снижается чувствительность гипоталамо-гипофизарной системы к ингибирующему действию стероидов.

Менструальный цикл обусловливается сложным взаимодействием 5-звеньевой системы (ЦНС-гипоталамус-гипофиз-яичники-матка). Его параметры: продолжительность 20-36 дней, в среднем 28; продолжительность менструации 2-7 дней, в среднем 3-4 дня; кровопотеря 50-150 мл, в среднем 75-100 мл; работоспособность в течение цикла сохраняется; самочувствие не нарушается.

В фолликулиновую фазу под влиянием ФСГ по невыясненным причинам начинается увеличение лишь одного фолликула. В первую неделю содержание Э2 низкое, по мере созревания фолликула увеличивается. За 24 ч до пика ЛГ (ФСГ) уровень Э2 достигает максимума и сенсибилизирует гипофиз к действию гонадолиберина. Выброс ЛГ обусловливается либо высоким уровнем Э2 по механизму положительной обратной связи, либо резким падением его уровня. Продолжительное введение высоких доз эстрогенов (пероральные контрацептивы) снижает секрецию ЛГ и ФСГ и действие гонадолиберинов на гипофиз. Содержание прогестерона в фолликулиновой фазе очень низкое.

В лютеиновую фазу после овуляции клетки гранулезы лопнувшего фолликула лютеинизируются и образуют желтое тело, которое вскоре начинает вырабатывать прогестерон и некоторое количество Э2. Максимальный уровень эстрадиола сохраняется до середины лютеиновой фазы, а затем резко снижается. Основной гормон в эту фазу - прогестерон - формирует секреторную фазу эндометрия, необходимую для наступления беременности. Для функционирования желтого тела требуется присутствие ЛГ, который выделяется 10 дней гипофизом, а затем с наступлением беременности после имплантации (22-24-й дни цикла) эту функцию берет на себя хорионический гонадотропин (ХГЧ) - плацентарный гормон, более близкий к ЛГ, вырабатываемый цитотрофобластными клетками имплантированного эмбриона. ХГЧ поддерживает синтез прогестерона желтым телом до тех пор, пока плацента не начнет продуцировать этот стероид в большом количестве. При отсутствии беременности желтое тело деградирует и наступает менструация, затем начинается новый менструальный цикл. Колебания продолжительности цикла, как правило, обусловлены различиями в фолликулиновой фазе. Лютеиновая фаза обычно продолжается 14+2 дня.

Начало беременности характеризуется тем, что имплантированная яйцеклетка (бластоциста) образует трофобласт, трансформирующийся впоследствии в плаценту, которая обеспечивает связь между кровообращениями зародыша и матери и вырабатывает ряд гормонов.

Хорионический гонадотропин человека (ХГЧ) - гликопротеиновый гормон, поддерживает существование желтого тела до тех пор, пока плацента не начнет продуцировать прогестерон в достаточном для нормального течения беременности количестве. ХГЧ обнаруживается через несколько дней после имплантации, что используется для ранней диагностики беременности. Максимальный уровень ХГЧ отмечается в середине первого триместра, постепенно снижаясь на протяжении беременности.

Прогестины в первые 6-8 недель беременности образуются желтым телом, затем эту функцию на себя берет плацента. Желтое тело продолжает функционировать, но вырабатывает гормонов в 30—40 раз меньше, чем плацента. Холестерол в плаценте не синтезируется, а потребляется из материнского организма.

Уровень эстрогенных соединений во время беременности постепенно возрастает. В наибольшем количестве образуется эстриол, который отражает фетоплацентарные функции. Надпочечники плода продуцируют дегидроэпиандростерон (ДЭА) и ДГЭА-сульфат, превращающийся в печени плода в 16α-гидроксипроизводные, которые затем попадают в плаценту, где преобразуются в эстриол. Последний поступает с кровью в печень матери, где связывается (конъюгирует) с глюкокортикоидами и в таком виде выделяется с мочой. По уровню эстриола в моче во время беременности судят о функции плаценты, развитии плода и многих других функциях фетоплацентарной системы.

Во время беременности в плаценте синтезируется и кортизол для плода (из плацентарного прогестерона), поскольку в надпочечниках плода отсутствуют необходимые для этого ферменты. Прегненолон, необходимый для синтеза ДЭА, попадает из организма матери.

Плацентарный лактоген - хорионический соматомаммотропин, или плацентарный гормон роста, вырабатывается плацентой и обладает биологическими свойствами гормона роста и пролактина. Предполагается, что он влияет на развитие плода, хотя окончательно его роль не ясна, тем более что у женщин, лишенных этого гормона, беременность протекает нормально и рождаются здоровые дети.

Установить фактор, инициирующий роды, до сих пор не удалось. Считается, что важную роль в этом играют гормоны (в частности, эстрогены и прогестины), влияющие на сокращение матки. Многие данные свидетельствуют об участии катехоламинов в индукции родов. Окситоцин стимулирует сокращения матки, что используется в клинической практике, однако этот гормон не инициирует роды до окончания беременности. Количество окситоциновых рецепторов на матке к концу беременности увеличивается в 100 раз по сравнению с началом беременности. Это происходит параллельно увеличению количества эстрогенных соединений, хотя эстриол считается ингибитором сократительной активности матки. Возможно, именно благодаря ему не происходит индукции родов до окончания беременности, когда количество этого гормона снижается. С растяжением шейки матки в конце беременности связывается импульсный характер выделения окситоцина. Важная роль в индуцировании родов принадлежит также механическим факторам (растяжение и сдавление мышцы матки). При родах у матери и плода резко изменяется гормональный гомеостаз, а после отторжения плаценты содержание в плазме крови половых стероидных гормонов быстро уменьшается.

Процесс лактации регулируется группой гормонов. Начинается его развитие во время беременности: эстрогены способствуют росту прогестинов, а прогестины стимулируют пролиферацию альвеол в молочной железе. Именно во время беременности молочные железы максимально развиваются. Для этого необходимо также действие пролактина, глюкокортикоидов, фактора роста, инсулина и других факторов. Концентрация пролактина во время беременности возрастает до 180-200 нг/мл (5000 мМЕ/л и больше). Известно влияние различных гормонов (кортизола, пролактина, инсулина) на синтез белков молока (лактоальбумин, лактоглобулин, козеин и др.). Подавляется образование и секреция молока во время беременности высоким уровнем прогестерона, который резко падает после родов, что и способствует лактации. Секреция и выделение пролактина происходят после родов в импульсном порядке во взаимосвязи с актами кормления новорожденного грудью. Этот процесс приводит также к импульсному выделению окситоцина, способствующему выбросу молока из железы.

Менопаузальный период характеризуется своеобразным гормональным статусом. С исчезновением фолликулов и прекращением их функции усиливается ароматизация надпочечникового стероида андростендиона и образуется значительное количество эстрона, обладающего слабой эстрогенной активностью. В этот период резко повышаются уровни ЛГ и ФСГ. Для женщин в постменопаузальном периоде характерны два явления: гипотрофия половых органов и вторичных половых тканей (признаков), а также остеопороз.

В настоящее время широко используются синтетические агонисты и антагонисты половых стероидных гормонов. Синтетическими эстрогенами являются 17α-этинилэстрадиол и листранол, используемые в качестве пероральных контрацептивов. Синтетическими антагонистами эстрогенов являются кломифена цитрат (кломид), тамоксифен и нафоксидин.

Кломифена цитрат имеет высокое сродство к рецепторам эстрогенов в гипоталамусе, а поэтому конкурирует с эстрадиолом за гипоталамические рецепторы. Вследствие этого повышается выделение гонадолиберина и высвобождаются большие количества ФСГ и ЛГ, наблюдается одновременное созревание многих фолликулов, что и обусловливает многоплодную беременность.

Нафоксидин и тамоксифен, взаимодействуя с рецепторами эстрогенов, образуют с хроматином очень стабильный комплекс, вследствие чего рецепторы не могут вступать в новый цикл, что надолго ингибирует действие эстрадиола. Поэтому данные антагонисты эстрогенов используются для лечения эстрогензависимых опухолей.

Из синтетических агонистов прогестинов известны 19-нортестостерон (норэтинтрон) с минимальной андрогенной активностью и медроксипрогестерона ацетат, которые за счет эффекта подавления овуляции используются в качестве контрацептивов разового и пролонгированного действия. Медроксипрогестерона ацетат блокирует деление нормальных и злокачественных клеток эндометрия за счет образования стабильных комплексов с рецепторами прогестерона и поэтому используется для лечения дифференцированного рака эндометрия.

Половые гормоны на определенном этапе развития обусловливают половую дифференцировку. Последняя осуществляется циклически по схеме: хромосомный пол → гонадный пол → фенотипический пол.

Хромосомный пол устанавливается уже при оплодотворении. Это единственный неизменный параметр данной цепочки: при наборе хромосом XY детерминирует мужской пол, XX - женский. При неясности гонадного и особенно фенотипического пола проводятся исследования на оценку хромосомного пола. Определяются тельца Барра (в клетках слизистой рта, фибробластах или лейкоцитах), которые представляют собой участки конденсированного хроматина, соответствующего инактивированной Х-хромосоме. Число телец Барра (полового хроматина) на единицу меньше числа Х-хромосом в ней: при генотипе XY - оно равно 0, при XX -1, при XXY - 1, при XXX - 2 и т. д. Гормоны не влияют на определение хромосомного пола.

Гонадный пол начинает определяться между 35-м и 50-м днями беременности миграцией зародышевых клеток от желточного мешка к половым складкам, и заканчивается этот процесс образованием первичных гонад. Последние еще не имеют половых различий. К 56-му дню в процесс включаются гормоны и происходит дифференцировка гонад. При отсутствии положительной динамики, т. е. дифференцировки первичной гонады в семеннике, все эмбрионы развиваются у фенотипических женщин, что возможно при отсутствии эффекта Y-хромосомы. Развитие семенников из первичной гонады связано со специфическим мужским антигеном клеточной поверхности (HY-антиген). Развитие женских половых органов завершается к 90-му дню беременности, т. е. несколько позже, чем при мужской дифференцировке, При мужском генотипе в первичных гонадах появляются клетки Лейдига, развиваются семенники, начинается синтез тестостерона и развитие мужского полового тракта. Развитие яичников и становление женского пола происходит лишь при отсутствии такой дифференцировки.

Фенотипический пол определяется внутренними и наружными половыми органами. Если мужские внутренние половые структуры развиваются из системы вольфовых протоков, то женские - из системы мюллеровых протоков. Оба вида этих систем дифференцируются из системы первичных половых протоков под влиянием соответствующих гормонов. Определяющая роль в такой дифференцировке принадлежит фактору ингибирования мюллеровых протоков (тестикулярный фактор - ФИМП).

ФИМП - это гликопротеин, образуется в сперматогенных канальцах и отражает первую эндокринную функцию семенников. Половая дифференцировка наружных половых органов из общей половой закладки определяется присутствием или отсутствием другого тестикулярного гормона - тестостерона и его производного - дегидротестостерона.

Синтез тестостерона - процесс, непосредственно предшествующий маскулинизации плода, когда определяется наиболее высокая активность 5α-редуктазы в предстательной железе и наружных половых органах. В вольфовых же протоках указанный фермент не определяется. Именно с этим ферментом связывается синдром тестикулярной феминизации, т. е. когда у генетических мужчин с нормальными вольфовыми структурами имеется женский фенотип, за исключением неразвитого влагалища.

Синтез эстрогенов в яичниках начинается в то же время, что и синтез тестостерона. Следовательно, фенотипическая дифференцировка женского типа - не пассивный процесс, в отличие от гонадной, поскольку синтез эстрогенов незрелыми гонадами играет роль в стимуляции деления первичных зародышевых клеток, т. е. в их дифференцировке в оогонии.

Щитовидная железа

Щитовидная железа (Щ Ж) массой 15-20 г состоит из двух долей, связанных перешейком, лежащим на передней поверхности трахеи под криковидным хрящом. Состоит железа преимущественно из сферических тиреоидных фолликулов, между которыми располагаются кровеносные капилляры и нервные окончания. В щитовидной железе взрослого человека содержатся парафолликулярные клетки (К-клетки) в соединительной ткани между фолликулами, которые вырабатывают пептидный гормон - кальцитонин.

Щитовидная железа вырабатывает два йодам инокислотных гормона - трийодтиронин (Т3) и тетрайодтиронин (Т4, тироксин), важнейшие регуляторы метаболизма, развития и дифференцировки тканей.

Физиология и биохимия этих гормонов изучены в значительной степени с помощью радиоактивного йода, нашедшего широкое применение в диагностике и лечении заболеваний ЩЖ. В то же время радиоактивный йод в избыточном количестве (как и радиоактивные осадки) может быть фактором риска возникновения рака щитовидной железы. Особенно это опасно в детском и подростковом возрасте, когда клетки щитовидной железы находятся в состоянии активного деления.

Гормоны щитовидной железы проявляют свою активность только с микроэлементом - йодом. Предшественником Т3 и Т4 служит тиреоглобулин (ТГ) - высокомолекулярный (660 000) белок, содержащий 0,2-1% иодида. Большая часть (70%) иодида в ТГ присутствует в составе неактивных предшественников - монойодтирозина (МИТ) и дийодтирозина (ДИТ), меньшая (30%) - в йодтирониальных остатках, Т3 и Т4. В норме соотношение Т43 составляет 7:1, при дефиците йода снижается. ТГ синтезируется в фолликулярных клетках железы, хранится во внеклеточном коллоиде, затем вновь поступает в клетку и путем гидролиза превращается вТ3 и Т4. Все эти процессы усиливаются ТТГ (или цАМФ), Т3 и Т4 секретируются клетками путем диффузии. Ежедневная секреция гормонального йода железой составляет 50 мкг, но дневная потребность в нем 150-200 мкг (захват железой иодида 25-30%). Если процессы активации биосинтеза гормонов ЩЖ осуществляются за счет ТТГ, то процессы торможения - соединениями тиомочевины. Последние используют в практике в качестве антитиреоидных средств, способных подавлять биосинтез гормонов ЩЖ. Обычно образование Т4 происходит за счет конденсации двух молекул ДИТ, а Т3 - за счет конденсации ДИТ и МИТ. Процессы гидролиза ТГ также активируются ТТГ, а тормозятся иодидом, что является основанием для лечения гипертиреоза препаратами калия иодида. Большая часть (50-70%) Т4 и Т3 находится вне ЩЖ в связанной форме в комплексе с двумя белками: тироксинсвязывающим глобулином (ТСГ) и тироксинсвязывающим преальбумином (ТСПА). Родство связывания Т4 и Т3 с ТСГ в 100 раз выше, чем с ТСПА, поэтому роль ТСГ намного выше. Гормоны ЩЖ проявляют активность в свободном (не связанном с ТСГ и ТСПА) состоянии, причем содержание Т3 и Т4 в свободных формах почти одинаковое, но время полужизни Т4 в 4-5 раз выше, чем у Т3, поэтому активность Т4 считается намного выше. Исследуют обычно общее содержание гормонов в плазме, а не их свободную часть. Поэтому определение ТСГ как регулятора активности Т3 и Т4 является чрезвычайно важным для диагностического тестирования. ТСГ синтезируется в печени, и его количество повышается под действием эстрогенов (необходимо помнить об этом при назначении противозачаточных средств и во время беременности). Снижают продукцию ТСГ андрогены и глюкокортикоиды, а также болезни печени. Возможно наследственное повышение или снижение ТСГ. Конкурируют за связывание с ТСГ салицилаты и фенитоин, которые снижают Уровень Т3 и Т4 при сохранении количества их свободных форм.

Вне ЩЖ вследствие деиодирования Т4 превращается в Т3. В метаболических процессах преобладающей формой является Т3, поскольку он связывается с рецепторами клеток-мишеней со сродством к ним, в 10 раз превышающим таковое у Т4. Реверсия Т4 в Т, является главным источником образования Т3, а реверсионный Т3 - слабый агонист синтезированного Т3. Ингибируют реверсию Т4 в Т3 пропранолол и пропилтиоурацил, а активируется этот процесс у плодов при хронических болезнях и углеводном голодании у матери.

Другие пути метаболизма гормонов ЩЖ заключаются в дезаминировании и декарбоксилировании (полное деиодирование) с образованием в печени конъюгатов-глюкуронидов и сульфатов, которые выделяются с желчью, вновь всасываются в кишечнике и затем деиодируются в почках и выделяются с мочой.

Регулируют процессы биосинтеза, выделения и метаболизма гормонов щитовидной железы ТТГ и РФ ТТГ (тиролиберином), а тормозят биосинтез Т3 и Т4 сами гормоны по принципу обратной связи. Снижение уровней Т3 и Т4 активирует ТТГ и РФ ТТГ. Запасов гормонов ЩЖ в печени и в связанной с ТСГ форме достаточно на несколько недель.

При дефиците йода срабатывают системы ауторегуляции ЩЖ. Ингибирует ТТГ также соматостатин, уровень которого повышается при увеличении содержания в плазме инсулиноподобного фактора роста (ИФР-1). Поэтому при лечении малорослых детей гормоном роста развивается гипотиреоз за счет увеличения уровня ИФР-1, повышающего секрецию соматостатина, который снижает количество ТТГ.

Гормоны ЩЖ проявляют свое действие, связываясь с ядерными рецепторами органов-мишеней. Активность ЩЖ в целом определяется, по-видимому, Т3, хотя и роль Т4 при этом сохраняется. Главная метаболическая роль гормонов ЩЖ состоит в повышении утилизации кислорода во всех органах, кроме головного мозга, гонад и ретикулоэндотелиальной ткани. Гормоны ЩЖ увеличивают эффективность Na+/K+-АТФазного насоса. Поэтому повышенная утилизация АТФ с увеличением потребления О2 представляет основной механизм метаболического действия гормонов ЩЖ. Они индуцируют синтез белка и приводят к отрицательному азотному балансу.

Гормоны ЩЖ являются необходимыми модуляторами процессов развития человека. Вот почему гипотиреоз у плодов или новорожденных приводит к появлению кретинизма с различными врожденными нарушениями и тяжелой необратимой задержкой умственного развития.

Зоб - увеличение ЩЖ как компенсаторное явление при снижении биосинтеза гормонов этого органа обычно сопровождается повышенной продукцией ТТГ. Причиной зоба чаще всего является недостаток йодида, хотя болезнь может развиться и при его избытке в случаях недостаточности ауторегуляторного механизма ЩЖ. В последующем простой зоб сопровождается гипотиреозом, что устраняется экзогенными тиреотропными гормонами, увеличением или ограничением потребления йода при специфических формах зоба.

Гипотиреоз обусловлен дефицитом свободных Т3 и Т4, что связано с недостаточностью ЩЖ а также патологией гипофиза или гипоталамуса. При гипотиреозе в раннем возрасте отмечается нарушение умственного развития (вплоть до кретинизма), в более позднем - нарушаются процессы роста с нормальным умственным развитием. Для лечения этой патологии используется заместительная терапия тиреоидными гормонами.

Гипертиреоз характеризуется избытком гормонов ЩЖ и обусловлен в первую очередь образованием тиреоидстимулирующего иммуноглобулина (IgG), активирующего рецепторы ТТГ. Это сопровождается диффузным разрастанием ЩЖ и избытком продукции T3 и Т4 , так как продукция IgG не контролируется по принципу обратной связи. Корректируется эта патология подавлением образования гормонов ЩЖ антитиреоидными средствами, блокадой функции ЩЖ радиоактивным изотопом йода, а также хирургическим вмешательством.

Выделяют также различные по этиологии и патогенезу заболевания ЩЖ, при которых обязательным компонентом является воспалительный процесс, разнообразные тиреоидиты, в том числе аутоиммунный с его гипо- и гипертиреоидными формами.

Надпочечники

Надпочечники являются парным органом и располагаются внебрюшинно у верхних полюсов почки. Их масса по 4 г независимо от пола и массы тела. Уникальность кровоснабжения надпочечников состоит в том, что каждая железа снабжается кровью тремя артериями - разветвлениями диафрагмальной артерии с изолированными венами по одной с каждой стороны (правая впадает в нижнюю полую, левая - в почечную).

Корковый слой надпочечников (90% от всей массы) состоит из клубочковой (наружной), пучковой (средней) и сетчатой (внутренней) зон. Встречается эктопированная (в почках, селезенке, семенном канатике, широкой связке матки) дополнительная ткань коркового слоя надпочечников. У 5-6-недельного плода развивается примитивная кора надпочечников в ретроперитонеальной мезенхиме, окончательно формируется надпочечник к трехлетнему возрасту, а увеличивается до конца периода полового созревания.

Мозговой слой надпочечников включается в симпатическую нервную систему и является эндокринным органом, что служит прекрасным примером взаимодействия нервной и эндокринной систем.

В коре надпочечников синтезируются десятки стероидов, лишь небольшая часть которых обладает установленной гормональной активностью: глюкокортикоиды, минералокортикоиды и андрогены. Связываясь с внутриклеточными рецепторами, затем со специфическими участками ДНК, они оказывают регулирующее влияние на экспрессию генов, изменяя скорость синтеза некоторых белков, и это влияет на различные метаболические процессы (как глюконеогенез и соотношение натрия и калия). Гормоны коры надпочечников играют ведущую роль в адаптации к сильным стрессам. Изучены основные этапы стероидогенеза и характер их изменений. Минералокортикоиды вырабатываются в клубочковой зоне, глюкокортикоиды и андрогены - в пучковой и сетчатой.

Основной глюкокортикоид - это кортизол, образующийся в пучковой зоне. Кортикостерон представлен в меньшем количестве, он синтезируется в пучковой и клубочковой зонах. Самый активный минералокортикоид - альдостерон, продуцируется только в клубочковой зоне. В пучковой и сетчатой зонах в значительном количестве вырабатывается предшественник андрогенов - дегидроэпиандростерон и слабый андроген - андростендион, а также небольшое количество тестостерона. Эти стероиды превращаются в более активные андрогены вне надпочечников и при определенной ферментной недостаточности стероидогенеза оказываются патологическим источником андрогенов. Андрогены надпочечников служат основным источником эстрогенов у женщин только в постменопаузальном периоде. В другие же периоды жизни женщин эстрогены в надпочечниках продуцируются незначительно, но при опухолях надпочечников могут синтезироваться в заметных количествах.

Все стероидные гормоны построены на основе структуры циклопентанпергидрофенантрена. Само название стероидных гормонов определяется количеством метальных групп. Их тривиальное название: холестерол, альдостерон, андростендион, кортикостерон, кортизол, дегидроэпиандростерон (ДЭА), 11-дезоксикортикостерон (ДОК), 11-дезоксикортизол, дексаметазон, эстрадиол, эстрон, эстриол, этиохоланолон, 2α-фторкортизол, преднизолон, преднизон, прегнандиол, прегнатриол, прегненолон, прогестерон, тестостерон.

Стероидные гормоны надпочечников образуются из холестерола, поступающего из крови и частично синтезирующегося в надпочечниках. Из него синтезируется промежуточное соединение всех стероидов - прегненолон, из которого формируются все стероиды при помощи основных ферментных систем (гидроксилазы, дегидрогеназы, изомеразы, лиазы). Стероидные гормоны не накапливаются в клетках, а высвобождаются в плазму с периодичностью, определяемой суточным ритмом выделения АКТГ. Кортизол в плазме крови находится в связанной с белками и свободной формах. Основной связывающий белок - это α-глобулин, называемый транскортином (кортикостероидсвязывающий белок), менее значимым в этом является альбумин. Транскортин синтезируется в печени, что стимулируется эстрогенами. По сродству связывания с транскортином с кортизолом конкурируют ДОК и прогестерон. Активная (свободная) форма кортизола составляет лишь 8% общего количества гормона. Альдостерон слабо связывается с альбумином, другие минералокортикоиды (кортикостерон, 11-ДОК) - с транскортином.

Кортизол и продукты его метаболизма составляют 80% всех 17-гидроксикортикоидов плазмы крови, другие глюкокортикоиды (кортизон и 11-дезоксикортизол) - 20%. Конъюгированные глюкокортикоиды (глюкокортикоиды и сульфаты) поступают в кишечник, обратно всасываются и попадают в кишечно-печеночный кровоток. Экскретируются они с мочой (70%), калом (20%) и через кожу (10%).

Альдостерон из крови удаляется печенью и после определенных превращений экскретируется с мочой.

Регулируется секреция и выделение кортизола АКТГ и кортиколиберином по принципу отрицательной обратной связи. Импульсный характер этого процесса определяется нервной системой, на что влияют физические и эмоциональные стрессы (состояние тревоги, страха, волнения и боль). Максимальное увеличение уровня кортизола начинается при засыпании и продолжается до окончания сна. Нарушается этот ритм при депрессивных состояниях.

Продукция же минералокортикоидов корректируется иначе: основными регуляторами являются ренин-ангиотензиновая система и калий, менее значимыми - натрий, АКТГ и нейрогуморальные механизмы.

Система ренин-ангиотензин участвует в регуляции кровяного давления и электролитного обмена. Основным гормоном этой системы является ангиотензин II, образующийся из ангиотензиногена. Последний синтезируется в печени и служит также субстратом для ренина - фермента, продуцируемого юкстамедуллярными клетками почечных артериол. Регуляторы выделения ренина действуют через почечные барорецепторы. Юкстамедуллярные клетки чувствительны также к изменениям концентрации натрия и калия. Поэтому любое уменьшение объема жидкости (обезвоживание, кровопотеря, снижение АД) либо снижение концентрации натрия хлорида стимулирует высвобождение ренина. На это влияет также ЦНС. Сигналы передаются по соматотическим нервам и опосредуются β-адренергическими рецепторами. Ренин превращает ангиотензиноген в ангиотензин I, а синтез ангиотензиногена в печени активируется эстрогенами и глюкокортикоидами. Весь этот процесс сказывается на образовании ангиотензина ΙΙ.

Ангиотензинпревращающий фермент - гликопротеин наряду с превращением ангиотензина I в ангиотензин II расщепляет брадикинин - мощное сосудорасширяющее средство и таким образом повышает кровяное давление двумя различными путями. Ангиотензин II является самым сильнодействующим вазоактивным агентом, увеличивающим АД путем сужения артериол. Кроме того, он ингибирует высвобождение ренина юкстамедуллярными клетками и очень сильно активирует выработку альдостерона. Это прямой эффект ангиотензина II на надпочечники, хотя на продукцию кортизола он не влияет. Ангиотензин связывается со специфическими рецепторами клубочковых клеток, количество которых регулируется уровнем ионов калия и самого гормона. Таким образом, калий играет Центральную роль в действии ангиотензина II на надпочечники.

Действие ангиотензина II по стимуляции превращения холестерола в прегненолон и кортикостерона в 18-гидрокортикостерон и альдостерон может быть опосредовано изменением содержания внутриклеточного кальция и метаболизма фосфолипидов. Определенную роль в этом может играть и биосинтез простагландинов: ПГЕ1 и ПГЕ2 активируют выброс альдостерона, a ПГF2α и ПГF1α - тормозят. Ингибитор же синтеза простагландинов - индометацин тормозит как базальное, так и стимулированное ангиотензином II высвобождение альдостерона.

Секреция альдостерона зависит от уровня калия: увеличение концентрации калия (уже на 0,1 мэкв/л) стимулирует, а снижение - ингибирует синтез и секрецию гормона. Гиперкалиемия способствует гипертрофии клубочковой зоны надпочечников и повышает чувствительность ее клеток к ионам калия. АКТГ мало влияет на уровень альдостерона, лишь длительное снижение АКТГ может косвенно, через другие регуляторы, ослаблять синтез гормона. Недостаточность натрия усиливает продукцию альдостерона, а повышение концентрации ионов натрия - снижает, что реализуется через систему ренин - ангиотензин.

Действие стероидных гормонов надпочечников многостороннее, связанное с метаболическими процессами. Глюкокортикоидные гормоны стимулируют образование глюкозы, влияя на катаболические и анаболические процессы в основном через ферментные системы. Эти эффекты уравновешиваются инсулином, который оказывает противоположное действие. Глюкокортикоиды увеличивают запасы гликогена даже при голодании. Они влияют на липидный обмен, стимулируя липолиз в одних частях тела (конечности) и липогенез в других (лицо, туловище) путем "пермиссивного эффекта", связанного с усилением липолитического влияния катехоламинов и гормона роста. Глюкокортикоиды в целом оказывают анаболическое действие на обмен белков и нуклеиновых кислот в печени и катаболическое - в других органах (мышцы, жировая ткань, кожа, кости).

Защитные механизмы - важнейшие для глюкокортикоидов. В высоких концентрациях они тормозят иммунологический ответ, вызывают гибель лимфоцитов и инволюцию лимфоидной ткани. Глюкокортикоиды также влияют на выработку В-лимфоцитов, супрессорную и хелперную функции Т-лимфоцитов и метаболизм антител. Подавляющий иммунный эффект этих гормонов особенно выражен в больших дозах, что используется для лечения аутоиммунных заболеваний, в том числе и в трансплантологии. В малых же дозах их влияние на иммунитет окончательно не известно.

Способность глюкокортикоидов подавлять воспалительную реакцию служит основанием для их клинического применения. Они ускоряют выход из костного мозга в кровь полиморфноядерных лейкоцитов, снижают накопление лейкоцитов в участках воспаления, но стимулируют выход из лейкоцитов веществ, участвующих в воспалительной реакции (кинины, гистамин, простагландины, плазмокиногенактивирующий фактор). Кроме того, они ингибируют пролиферацию фибробластов, продукцию ими коллагена и фибропектина. Сочетание перечисленных эффектов ведет к плохому заживлению ран, повышенной чувствительности к инфекции и снижению воспалительного ответа, что наблюдается у больных с избытком глюкокортикоидов.

Известно влияние глюкокортикоидов и на другие функции: они необходимы для поддержания нормального АД и минутного объема сердца, (что реализуется через катехоламины), влияют на водно-электролитный обмен, воздействуя на ренин-ангиотензивную систему и изменяя секрецию антидиуретического гормона (АДГ), а также за счет собственной минералокортикоидной активности. Наконец, глюкокортикоиды существенно влияют на рост и развитие соединительной ткани, мышц и костей за счет катаболического эффекта, ингибирования роста и деления фибробластов, торможения синтеза белков, РНК, ДНК, стимуляции роста белка и РНК, ингибирования деления костных клеток и развития остеопороза. Непосредственным образом глюкокортикоиды участвуют в физиологическом ответе на стресс, связанный с хирургическим вмешательством, травмой или инфекцией. При недостатке кортизола ответ ослабляется и шансы на выживание снижаются.

Минералокортикоидные гормоны воздействуют на почки, стимулируя активный транспорт натрия, задерживая его в организме. Альдостерон способствует выделению почками калия, водорода, азотистого остатка. Подобными, но более слабыми (в 50 и 1000 раз) эффектами обладают 11-дезоксикортикостерон и кортизол.

Для биологического действия кортикостероидные гормоны связываются с рецепторами, отчего наряду с концентрацией гормона зависит степень их влияния. По способности стероидов опосредовать глюкокортикоидный эффект их делят на четыре класса:

1 - агонисты: дексаметазон, кортизол, кортикостерон, сульфостерон;

2 - частичные агонисты: 11 β-гидроксипрогестерон, 21-дезоксикортизол, 17α-гидроксипрогестерон, прогестерон;

3 -антагонисты: тестостерон, 17β-эстрадиол, 19-нортестостерон, кортизон;

4 - неактивные стероиды: 11 α-гидроксипрогестерон, андростендион, 11α-, 17α-метилтестостерон, тетрагидрокортизол.

Установлено, что кортикостероиды влияют на внутриклеточные процессы путем изменения содержания в клетке критически важных белков (преимущественно ферментов), выполняя таким образом регуляцию скорости генной транскрипции.

Первичная недостаточность надпочечников (Аддисонова болезнь) сопровождается гипогликемией, высокой чувствительностью к инсулину, непереносимостью стрессов, гипотонией со снижением натрия и повышением калия в крови, другими нарушениями. У этих больных усилена пигментация кожи за счет повышения уровня АКТГ и продуктов ПОМК. Вторичная недостаточность надпочечников из-за дефицита АКТГ при инфекции, инфаркте или опухоли проявляется теми же симптомами, что и первичная без гиперпигментации.

При избытке глюкокортикоидов развивается синдром Иценко-Кушинга. Он формируется при аденоме гипофиза, надпочечников или эктопической секреции АКТГ клетками опухоли. У больных отмечаются гипергликемия, повышенный катаболизм белков, нарушаются процессы липолиза и липогенеза, снижается сопротивляемость организма, отмечаются гипокалиемия, гипернатриемия, отечность и гипертензия.

При недостаточности или избытке глюкокортикоидов развиваются нарушения генеративной функции. Расстройства, связанные с минералокортикоидными гормонами при аденомах клубочкового слоя в виде первичного альдостеронизма (синдром Конна), проявляются гипернатриемией, гипертензией и алкалозом. При этом снижены уровни ренина и ангиотензина II с нормальным содержанием глюкокортикоидов. При гиперплазии и гиперфункции юкстамедуллярных клеток почек развивается вторичный альдостеронизм с той же симптоматикой, что и первичный, но уже с повышенным уровнем ренина и ангиотензина.

Надпочечниковая недостаточность может быть острой (классический пример - синдром Уотерхауса — Фридериксена и др.) или хронической.

Врожденная гиперплазия надпочечников формируется в эмбриональном периоде при ферментных нарушениях процессов стероидогенеза, сопровождающихся недостаточной продукцией кортизола и гиперсекрецией андрогенов, что приводит к вирилизации и нарушениям формирования полового фенотипа. Это заболевание еще называется адреногенитальным синдромом. При нем может быть избыток или недостаток альдостерона, что проявляется гипертензией либо потерей организмом соли.

Вегетативная (автономная) нервная система включает в себя парасимпатическую с холинергическими пре- и постганглионарными нервами и симпатическую с холинергическими преганглионарными и адренергическими постганглионарными нервами, а также мозговой слой надпочечников. Последний является фактически продолжением симпатической нервной системы, так как преганглионарные волокна чревного нерва оканчиваются на хромаффинных клетках мозгового слоя надпочечников, продуцирующих катехоламины - дофамин, норадреналин и адреналин.

Гормоны симпатоадреналовой системы (адреналин, норадреналин) обеспечивают адаптацию к острым и хроническим стрессам, являются основными элементами реакции организма, характеризующейся быстрой доставкой жирных кислот (топлива для мышечной активности), мобилизацией глюкозы в качестве источника энергии для мозга со снижением уровня инсулина, усилением кровотока в мозге, увеличением силы и частоты сердечных сокращений, сужением периферических сосудов и повышенным снабжением кислородом за счет учащения дыхания. Катехоламиновые гормоны синтезируются хромаффинными клетками мозгового слоя надпочечников. Эти клетки обнаружены также в сердце, печени, почках, половых железах и в нервной системе.

В мозговом слое надпочечников содержатся хромаффинные гранулы - органеллы, способные к биосинтезу, поглощению, хранению и секреции катехоламинов. Они обладают гормональной и нейромедиаторной активностью, очень недолговечны (период их полужизни составляет 10-30 с). Метаболизм катехоламинов осуществляется различными моноаминоксиазами и О-метилтрансферазой с образованием множества метаболитов, основными классами которых остаются метанефрины и ванилинминдальная кислота. Регулируется биосинтез катехоламинов гипоталамусом, стволом мозга и состоянием нервных и эндокринных факторов.

Катехоламины действуют через два главных класса рецепторов: альфа-адренергические и бета-адренергические, каждый из которых подразделяется на два подкласса: альфа-1 и альфа-2, бета-1 и бета-2. Адреналин связывается с альфа- и бета-рецепторами, норадреналин - главным образом с альфа-рецепторами. Рецепторы трех из этих подгрупп сопряжены с аденилатциклазной системой. Гормоны, связывающиеся с альфа-2-рецепторами, ингибируют цАМФ и подавляют ее синтез, с бета-1- и бета-2-рецепторами - активируют цАМФ и повышают синтез. Противоположным образом они влияют на гуанилатциклазную систему и биосинтез гАМФ.

Альфа-рецепторы участвуют в процессах, связанных с изменением внутриклеточной концентрации кальция или метаболизма фосфатидилинозитида. Основные биохимические и физиологические эффекты действия катехоламинов на рецепторы: альфа-1 - повышение гликогенолиза и сокращение гладких мышц сосудов и мочеполовой системы; альфа-2 - расслабление гладких мышц ЖКТ, ингибирование липолиза, секреции инсулина и ренина и агрегации тромбоцитов; бета-1 - стимуляция липолиза, сокращение миокарда с увеличением амплитуды и силы сокращений; бета-2 - повышение глюконеогенеза в печени и глюкогенолиза в печени и мышцах; повышение секреции ренина, инсулина и глюкагона, расслабление гладких мышц бронхов, кровеносных сосудов, мочеполовой системы и ЖКТ. Действие катехоламинов по повышению силы сокращений именуется инотропным эффектом, по повышению частоты сокращений - хронотропным. Катехоламины влияют на функцию всех эндокринных органов и продукцию их гормонов.

Основным заболеванием этой системы является феохромоцитома - опухоль мозгового слоя надпочечников, при которой повышается продукция катехоламинов с развитием тяжелого гипертонического синдрома.

Дата: 2019-03-05, просмотров: 168.