Определение. Если заданы две прямые y = k1 x + b1 , y = k 2x + b2 , то острый угол между этими прямыми будет определяться как
.
Две прямые параллельны, если k1 = k2 . Две прямые перпендикулярны, если k1 = -1/ k2 .
Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В1 у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = λА, В1 = λВ. Если еще и С1 = λС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.
Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой
Определение. Прямая, проходящая через точку М1 (х1 , у1 ) и перпендикулярная к прямой у = kx + b представляется уравнением:
Расстояние от точки до прямой
Теорема. Если задана точка М(х0 , у0 ), то расстояние до прямой Ах + Ву + С =0 определяется как
.
Доказательство. Пусть точка М 1(х 1, у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1 :
(1)
Координаты x1 и у1 могут быть найдены как решение системы уравнений:
Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой. Если преобразовать первое уравнение системы к виду:
A(x – x 0 ) + B(y – y0 ) + Ax0 + By0 + C = 0,
то, решая, получим:
Подставляя эти выражения в уравнение (1), находим:
Теорема доказана.
Пример. Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.
k 1 = -3; k 2 = 2; tgφ = ; φ= π /4.
Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.
Решение. Находим: k 1 = 3/5, k2 = -5/3, k 1* k 2 = -1, следовательно, прямые перпендикулярны.
Пример. Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.
Решение. Находим уравнение стороны АВ: ; 4 x = 6 y – 6;
2 x – 3 y + 3 = 0;
Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b . k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .
Ответ: 3 x + 2 y – 34 = 0.
Плоскость в пространстве. различные виды уравнений плоскости угол между прямой и плоскостью
Общее уравнение плоскости.
Приведем формулировку теоремы, которая дает нам вид уравнения плоскости.
Теорема.
Всякое уравнение вида , где A, B, C и D – некоторые действительные числа, причем А, В и C одновременно не равны нулю, определяет плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве, и всякая плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве может быть задана уравнением вида .
Уравнение называется общим уравнением плоскости в пространстве. Если не придавать числам А, В, С и D конкретных значений, то общее уравнение плоскости называют уравнением плоскости в общем виде.
Следует заметить, что уравнение вида , где - некоторое действительное число, отличное от нуля, будет определять ту же самую плоскость, так как равенства и эквивалентны. К примеру, общие уравнения плоскости и задают одну и ту же плоскость, так как им удовлетворяют координаты одних и тех же точек трехмерного пространства.
Немного поясним смысл озвученной теоремы. В прямоугольной системе координат Oxyz каждой плоскости соответствует ее уравнение общего вида , а каждому уравнению соответствует плоскость в заданной прямоугольной системе координат трехмерного пространства. Другими словами, плоскость и ее общее уравнение неразделимы.
Если все коэффициенты А, В, С и D в общем уравнении плоскости отличны от нуля, то оно называется полным. В противном случае, общее уравнение плоскости называется неполным.
Дата: 2019-03-05, просмотров: 257.