Перенос газов кровью.
Помимо жабр у рыб в газообмене принимают участие кожа, желудочно-кишечный тракт, плавательный пузырь, специальные органы. Жабры. Основная нагрузка в обеспечении организма рыб кислородом и удалении из него углекислого газа ложится на жабры. Жабры хорошо приспособлены к газообмену в водной среде. Кислород переходит в капиллярное русло жабр по градиенту парциального давления, который у рыб составляет 40-100 мм рт. ст. Такова же причина перехода кислорода из крови в межклеточную жидкость в тканях. Жаберная поверхность в 10-60 раз превышает площадь тела рыбы. К тому же жабры, высокоспециализированные на газообмене органы. Самое совершенное строение жаберного аппарата характерно для костистых рыб. Основой жаберного аппарата являются 4 пары жаберных дуг. На жаберных дугах располагаются хорошо васкуляризированные жаберные лепестки, образующие дыхательную поверхность.По стороне жаберной дуги, обращенной в ротовую полость, располагаются более мелкие структуры - жаберные тычинки, которые в большей мере отвечают за механическую очистку воды по мере ее поступления из ротовой полости к жаберным лепесткам.Поперечно жаберным лепесткам располагаются микроскопические жаберные лепесточки, которые и являются структурными элементами жабр как органов дыхания. Покрывающий лепесточки эпителий имеет клетки трех типов: респираторные, слизистые и опорные. Площадь вторичных ламелей и, следовательно, дыхательного эпителия зависит от биологических особенностей рыбы - образа жизни, интенсивности основного обмена, потребности в кислороде.Однако известно, что крупные и активные виды, например тунец, рта не закрывают, и дыхательные движения жаберных крышек у них отсутствуют. Такой тип вентиляции жабр называют "таранным"; он возможен только при больших скоростях перемещения в воде.Для прохождения воды через жабры и движения крови по сосудам жаберного аппарата характерен противоточный механизм, обеспечивающий очень высокую эффективность газообмена. Пройдя через жабры, вода теряет до 90 % растворенного в ней кислорода. Жаберный газообмен может быть эффективным только при постоянном токе воды через жаберный аппарат. Жаберное дыхание следует рассматривать как очень эффективный механизм газообмена в водной среде с точки зрения эффективности извлечения кислорода, а также энергозатрат на этот процесс. В том случае, когда жаберный механизм не справляется с задачей адекватного газообмена, включаются другие (вспомогательные) механизмы.
Кожное дыхание. Кожное дыхание имеет существенное значение для видов, ведущих малоподвижный образ жизни в условиях низкого содержания кислорода, или, вообще, покидающих кратковременно водоем (угорь, илистый прыгун, сомы). Изучение онтогенетического развития рыб свидетельствует о том, что кожное дыхание первично по отношению к жаберному. Эмбрионы и личинки рыб осуществляют газообмен с окружающей средой через покровные ткани. Интенсивность кожного дыхания усиливается с повышением температуры воды, так как повышение температуры усиливает обмен веществ и снижает растворимость кислорода в воде.В целом, интенсивность кожного газообмена определяется морфологией кожи. Механизм кожного дыхания у животных изучен явно недостаточно. Важную роль в этом процессе играет кожная слизь, в составе которой обнаруживается и гемоглобин, и фермент карбоангидраза.
Кишечное дыхание. В экстремальных условиях (гипоксия) кишечное дыхание используется многими видами рыб. У таких рыб (сомик, пескарь) воздух заглатывается и перистальтическими движениями кишечника направляется в специализированный отдел. Заглоченный пузырек атмосферного воздуха в кишке находится под определенным давлением, что повышает коэффициент диффузии кислорода в кровь. В этом месте кишка обеспечивается венозной кровью, поэтому возникают хорошая разница парциального давления кислорода и углекислого газа и однонаправленность их диффузии. Плавательный пузырь не только обеспечивает рыбе нейтральную плавучесть, но и играет определенную роль в газообмене. Он бывает открытым (лососевые) и закрытым (карп). Открытый пузырь связан воздушным протоком с пищеводом, и его газовый состав может быстро обновляться. В закрытом пузыре изменение газового состава происходит только через кровь.В стенке плавательного пузыря имеется особая капиллярная система, которую принято называть "газовой железой". Капилляры железы образуют круто изогнутые противоточные петли. Однако противоточный механизм кровотока в газовой железе приводит к тому, что этот кислород плазмы диффундирует в полость пузыря. Таким образом, пузырь создает запас кислорода, который используется организмом рыбы в неблагоприятных условиях.Другие приспособления для газообмена представлены лабиринтом (гурами, лялиус, петушок), наджаберным органом (рисовый угорь), легкими (двоякодышащие), ротовым аппаратом (окунь ползун), глоточными полостями (Ophiocephalussp.). Морфологически и функционально с органами дыхания связаны псевдобранхии - особые образования жаберного аппарата. То, что к этим структурам притекает кровь от жабр, насыщенная кислородом, свидетельствует о том.что они не участвуют в обмене кислорода. Однако наличие большого количества карбоангидразы на мембранах псевдобранхии допускает участие этих структур в регуляции обмена углекислого газа в пределах жаберного аппарата. Функционально с псевдобранхиями связана так называемая сосудистая железа, расположенная на задней стенке глазного яблока и окружающая зрительный нерв. Сосудистая железа имеет сеть капилляров, напоминающую таковую в газовой железе плавательного пузыря. Есть точка зрения, что сосудистая железа обеспечивает снабжение сильно насыщенной кислородом кровью сетчатки глаза при максимально низком поступлении в нее углекислого газа.
Перенос газов кровью. Основным транспортировщиком кислорода в крови у рыб выступает гемоглобин. Гемоглобин рыб функционально делится на два типа- чувствительный к кислоте и нечувствительный к кислоте. Чувствительный к кислоте гемоглобин при понижении рН крови утрачивает способность связывать кислород.Нечувствительный к кислоте гемоглобин не реагирует на величину рН. У некоторых арктических и антарктических видов рыб гемоглобина в крови нет вообще. В определенных условиях с транспортированием газов справляется одна плазма. Однако в обычных условиях у подавляющего большинства рыб газообмен без гемоглобина практически исключен. Диффузия кислорода из воды в кровь протекает по градиенту концентрации. Градиент сохраняется, когда растворенный в плазме кислород связывается гемоглобином, т.е. диффузия кислорода из воды идет до полного насыщения гемоглобина кислородом. Транспорт углекислого газа кровью осуществляется по-другому. Роль гемоглобина в переносе углекислого газа в виде карбогемоглобина невелика. Гемоглобин переносит не более 15 % углекислого газа. Основной транспортной системой для переноса углекислого газа является плазма крови. Попадая в кровь в результате диффузии из клеток, углекислый газ вследствие его ограниченной растворимости создает повышенное парциальное давление в плазме и таким образом должен тормозить переход газа из клеток в кровяное русло. На самом деле этого не происходит. В плазме под влиянием карбоангидразы эритроцитов осуществляется реакция СО2 + Н2О->Н2СО3-->Н+ + НСО3
Образующийся бикарбонат с кровью поступает в жаберный эпителий, который также содержит карбоангидразу. Поэтому в жабрах происходит преобразование бикарбонатов в углекислый газ и воду. Далее по градиенту концентрации СО2 из крови диффундирует в омывающую жабры воду.
Дата: 2019-02-19, просмотров: 966.