Теоретико-множественный смысл частного натуральных чисел
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В аксиоматической теории деление определяется как операция, обратная

а-Ь = с

умножению, поэтому между делением

а- с:г)

 

 

и умножением устанавливается тесная взаимосвязь. Если а × b =  с, то, зная произведение с и один из множителей, можно при помощи деления найти другой множитель.

Выясним теоретико-множественный смысл полученных частных с : b и с : а.

Произведение  а × b = с с теоретико-множественной точки зрения представляет собой число элементов в объединении b попарно непересекающихся множеств, в каждом из которых содержится а элементов, т.е.

а × b  = n(А ₁ È А₂ È ... ÈА b), где   n(А ₁) = n(А ₂)=…= n(А b ). Так как множества   попарно не пересекаются, а при их объединении получается множество - назовем его А, - в котором с элементов, то можно говорить о разбиении множества А на равночисленные подмножества А ₁, А₂,  ...,  А b .   Тогда частное с: а - это число подмножеств в  разбиении множества А, а частное  с : b - число элементов в каждом подмножестве этого разбиения.

Мы установили, что с теоретико-множественной точки зрения деление чисел оказывается  связанным с разбиением конечного множества  на равночисленные попарно непересекающиеся подмножества и с его помощью решаются две задачи: отыскание числа элементов в ка­ждом подмножестве разбиения (деление на равные части) и отыскание числа таких подмножеств (деление по содержанию).

Таким образом, если а = п(А) и множество А разбито на попарно непересекающиеся равночисленные подмножества и если:

b - число элементов в каждом подмножестве, то частное а: b - это число таких подмножеств;

b - число подмножеств, то частное а: b- это число элементов в каж­дом подмножестве.

Взаимосвязь деления натуральных чисел с разбиением конечных множеств на классы позволяет обосновывать выбор действия деления при решении задач, например, такого вида: «12 карандашей разложи­ли в 3 коробки поровну. Сколько карандашей в каждой коробке?»

В задаче рассматривается множество, в котором 12 элементов. Это множество разбивается на 3 равночисленных подмножества. Требует­ся узнать число элементов в каждом таком подмножестве. Это число, как установлено выше, можно найти при помощи деления – 12 :3. Вы­числив значение этого выражения, получаем ответ на вопрос задачи -в каждой коробке по 4 карандаша.

Если дана задача: «В коробке 12 карандашей, их надо разложить в коробки, по 3 карандаша в каждую. Сколько коробок понадобит­ся'?», - то для решения выбор действия деления можно обосновать следующим образом. Множество из 12 элементов разбивается на под­множества, в каждом из которых по 3 элемента. Требуется узнать чис­ло таких подмножеств. Его можно найти при помощи деления - 12:3. Вычислив значение этого выражения, получаем ответ на вопрос зада­чи - понадобится 4 коробки.

Используя теоретико-множественный подход к действиям над целы­ми неотрицательными числами, можно дать теоретико-множественное истолкование правила деления суммы на число: если частные а:с и b:с существуют, то (а + b):с =  а:с + b:с. Пусть а = п{А) и b = п(В), причем А Ç В = Æ. Если множества А и В можно разбить на равночисленные подмножества, состоящие из с элементов каждое, то и объединение этих множеств допускает такое же разбиение. Если при этом множество А состоит из а: с подмножеств, а множество В - из b: с подмножеств, то А È В состоит из а:с + b:с подмножеств. Это и значит, что (а + b ):с =а:с + b:с.

Аналогично проводятся рассуждения и в случае, когда с рассмат­ривается как число равночисленных подмножеств в разбиении мно­жеств А и В.

С теоретико-множественной точки зрения можно рассмотреть и смысл отношений «больше в» и «меньше в», с которыми младшие школьники встречаются при решении текстовых задач.

В аксиоматической теории определение этих отношений вытекает из определения деления  натуральных чисел: если а: b = с, то можно говорить, что «а больше b в с раз» или что « b меньше а в с раз». И чтобы узнать, во сколько раз одно число больше или меньше другого, надо большее число разделить на меньшее.

Если же а = п(А), b = п(В) и известно, что «а меньше b в с раз», то поскольку а < b, то в множестве В можно выделить собственное подмножество, равномощное множеству А, но так как а меньше b в с раз, то множество В можно разбить на с подмножеств, равномощных множеству А.

Так как с - это число подмножеств в разбиении множества В, содержащего b элементов, а в каждом подмножестве - а элементов, то с = b :а.

Теоретико-множественным смыслом отношения «а больше (меньше) b в с раз» можно воспользоваться при обосновании выбора действий при решении задач. Рассмотрим, например, такую задачу: «На участке растут 3 ели, а берез в 2 раза больше. Сколько берез растут на участке?»

В задаче речь идет о двух множествах: множестве елей (А) и множестве берез (В). Известно, что п(А) = 3 и что в множестве В элементов в 2 раза больше, чем в множестве А. Требуется найти число элементов в множестве В, т.е. п(В).

Рис. 116


Так как в множестве В элементов в 2 раза больше, чем в множестве А,  то множество В можно разбить на 2 подмножества, равномощных множеству А (рис. 116). Поскольку в каждом из подмножеств содержится по 3 элемента, то всего в множестве В будет 3 + 3 или 3×2 элементов. Выполнив вычисления, получаем ответ на вопрос задачи: на участке растет 6 берез.

 

 Теоретико-множественное истолкование можно дать и делению с остатком. Напомним, что разделить натуральное число а на нату­ральное число b с остатком - ото значит найти такие натуральные целые неотрицательные числа q и r, что а = b q +  r , где  0 £ r < b.

Пусть а = n(А) и множество А разбито на множества  А ₁,  А₂, ... , А q, R, так, что множества А ₁,  А₂, ... , А q  равночисленны, а множество R содержит меньше элементов, чем каждое из множеств А ₁,  А₂, ... , А q.  Тогда, если n(А ₁)= n(А ₂)=…= n(А q) = b,  а n( R) = r, где  0 £ r < b, причем число q равночисленных множеств является неполным част­ным при делении а на b, а число элементов в R - остатком при этом делении.

 


Упражнения

1.       Используя теоретико-множественный смысл частного, объясните смысл выражений:

а) 10:2;            6)5:1;           в) 5:5.

2.   Объясните, почему нижеприведенные задачи решаются при помощи деления.

а) 15 редисок связали в пучки по 5 редисок в каждом. Сколько получилось пучков?

б) 15 тетрадей раздали поровну 5 ученикам. Сколько тетрадей получил каждый?

3. Назовите отношения, которые рассматриваются в задачах, ре­шите задачи арифметическим методом, выбор действий обоснуйте.

а) Для украшения елки девочка вырезала 4 звездочки, а флажков в 3 раза больше. Сколько флажков вырезала девочка?

б) У Коли в 4 раза больше открыток, чем у Вовы. А у Лены их на 20 меньше, чем у Коли. Сколько открыток у Лены, если у Вовы их 7?

в) Миша поймал 48 окуней. Саша - на 6 меньше, чем Миша, а Коля - в 7 раз меньше, чем Саша. Сколько окуней поймали все мальчики?

4. Какое правило является обобщением различных арифметических способов решения задачи.

а) В коробке лежало 12 зеленых и 20 красных хлопушек. Все хло­пушки раздали детям, по 4 каждому. Сколько ребят получили хло­пушки?

б) В лапту играли 8 девочек и 6 мальчиков. Они разделились на 2 команды. Сколько человек было в каждой команде?

5. Обоснуйте с теоретико-множественной позиции выбор действия при решении задачи.

В мастерской было 7 колес для велосипедов. При ремонте постави­ли на каждый велосипед по 2 колеса. На сколько велосипедов поста­вили колеса и сколько колес осталось в мастерской?

75. Основные выводы § 15

Изучая материал данного параграфа, установили, что натуральное число как характеристику количества можно рассматривать и как результат счета элементов конечного множества, и как общее свойство класса конечных равномощных множеств.

Число «нуль» с теоретико-множественных позиций - это число элементов пустого множества: n(Æ) = 0.

Если отношение «меньше» рассматривать с теоретико-множественной  точки зрения, то:

1) а < b <=> Nа Ì  N b, где N а ={1, 2 ,..., а}, N b = {1, 2,..., b};

2) а < b <=> А - В ₁, где В ₁ Ì В и В ₁ ¹ В, В ₁ ¹ Æ , а = п(В), b = п(В).

Так как количественные натуральные числа связаны с конечными тожествами, то действия над числами оказались связанными с действиями над множествами:

сложение чисел - с объединением конечных непересекающихся множеств;

вычитание чисел - с дополнением подмножества;

умножение чисел - с объединением равночисленных попарно не­пересекающихся множеств;

деление чисел - с разбиением множества на попарно непересе­кающиеся подмножества.

Так как действия над числами получили теоретико-множественную трактовку, то такую же трактовку оказалось возможным дать и их свойствам.

Дата: 2019-02-02, просмотров: 291.