т.е. одно из исходных соединений вначале поглощает квант видимого или
ультрафиолетового света и лишь после этого приобретает реакционную способность.
б) Поскольку здесь — более одной стадии, такие процессы тоже фор-
мально относятся к сложным.
в) Хотя более важно то, что реакция требует предварительной активации реагента (светом). Это сближает фотохимические реакции с цепными и каталитическими (к которым обратимся в следующей главе).
2. а) Остановимся вначале на энергетике фотохимических реакций. Ключевым является закон Эйнштейна: каждый поглощенный квант активирует лишь одну молекулу.
где h = 6,625 · 10-34 Дж · с — постоянная Планка, с = 3,0 · 108 м/с — скорость света, v — частота колебаний, а λ — длина волны.
б) Известно, что
I. хлорофиллом поглощаются фотоны с λ = 680 нм,
II. в расчете на каждый электрон, отнимаемый от кислорода воды, поглощаются 2 фотона (для чего используются две последовательно связанные
фотохимические системы),
III. ∆G0сr (глюкоза) = —2871 кДж/моль.
в) Отсюда можем найти к.п.д. фотосинтеза, т.е. ту долю энергии фотонов (поглощаемых хлорофиллом), которая оказывается в конечном счете в глюкозе.
II. Поэтому
Как видно, это отношение числа образовавшихся молекул продукта к числу
поглощенных фотонов.
в) Но в других процессах бывает, что γ > 1.
5. а) И то, и другое не противоречит закону Эйнштейна. Дело в том, что данный закон относится лишь к первой стадии процесса (19.34). А вторая стадия может протекать не только так, как показано в уравнении (19.34), но и совершенно иным, гораздо более сложным, способом.
б) Так, для простейшего варианта, представленного в (19.34), γ=1.
в) Но в случае фотосинтеза вторая «стадия» — это сложная совокупность преобразований, в ходе которых часть энергии 48 поглощенных фотонов иcпользуется для синтеза одной молекулы глюкозы. (Остальная часть энергии
рассеивается в ходе многочисленных реакций, что поддерживает необрати-
мость процесса в целом.) В итоге и получается, что γ 1.
г) В других процессах причиной малого значения γ может быть то, что активированные молекулы A* не только превращаются в интересующий нас продукт, но и просто дезактивируются.
д) А когда γ > 1? Тогда, когда реакции идут по цепному механизму, активация молекул реагента может осуществляться не только фотонами, но и продуктами реакции.
Дата: 2019-02-02, просмотров: 217.