Блок «Высшая математика».
Понятие матриц. Виды матриц.
Определение. Матрицей размера m´n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.
А =
Основные действия над матрицами.
Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.
Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной.
Определение. Матрица вида:
= E,
называется единичной матрицей.
Определение. Если amn = anm , то матрица называется симметрической.
Пример . - симметрическая матрица
Определение. Квадратная матрица вида называется диагональной матрицей.
Определители. Вычисление определителей.
Определителем квадратной матрицы А= называется число, которое может быть вычислено по элементам матрицы по формуле:
det A = , где
М1к – детерминант матрицы, полученной из исходной вычеркиванием первой строки и k – го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.
Предыдущая формула позволяет вычислить определитель матрицы по первой строке, также справедлива формула вычисления определителя по первому столбцу:
det A =
Вообще говоря, определитель может вычисляться по любой строке или столбцу матрицы, т.е. справедлива формула:
detA = , i = 1,2,…,n.
Очевидно, что различные матрицы могут иметь одинаковые определители.
Определитель единичной матрицы равен 1.
Для указанной матрицы А число М1к называется дополнительным минором элемента матрицы a1k. Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах.
Определение. Дополнительный минор произвольного элемента квадратной матрицы aij равен определителю матрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца.
Обратная матрица.
Определим операцию деления матриц как операцию, обратную умножению.
Определение. Если существуют квадратные матрицы Х и А одного порядка, удовлетворяющие условию:
XA = AX = E,
где Е - единичная матрица того же самого порядка, что и матрица А, то матрица Х называется обратной к матрице А и обозначается А-1.
Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.
Рассмотрим общий подход к нахождению обратной матрицы.
Исходя из определения произведения матриц, можно записать:
AX = E Þ , i=(1,n), j=(1,n),
eij = 0, i ¹ j,
eij = 1, i = j .
Таким образом, получаем систему уравнений:
,
Решив эту систему, находим элементы матрицы Х.
Пример. Дана матрица А = , найти А-1.
Таким образом, А-1= .
Однако, такой способ не удобен при нахождении обратных матриц больших порядков, поэтому обычно применяют следующую формулу:
,
где Мji- дополнительный минор элемента аji матрицы А.
Пример. Дана матрица А = , найти А-1.
det A = 4 - 6 = -2.
M11=4; M12= 3; M21= 2; M22=1
x11= -2; x12= 1; x21= 3/2; x22= -1/2
Таким образом, А-1= .
Определение.
1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.
2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.
3)Базисом на прямой называется любой ненулевой вектор.
Определение. Если - базис в пространстве и , то числа a, b и g - называются компонентами или координатами вектора в этом базисе.
В связи с этим можно записать следующие свойства:
- равные векторы имеют одинаковые координаты,
- при умножении вектора на число его компоненты тоже умножаются на это число,
= .
- при сложении векторов складываются их соответствующие компоненты.
; ;
+ = .
Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.
1-я ось – ось абсцисс
2-я ось – ось ординат
3-я ось – ось апликат
Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.
Если заданы точки А(x1, y1, z1), B(x2, y2, z2), то = (x2 – x1, y2 – y1, z2 – z1).
Определение. Базис называется ортонормированным, если его векторы попарно ортогональны и равны единице.
Определение. Декартова система координат, базис которой ортонормирован называется декартовой прямоугольной системой координат.
Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве А(х1, y1, z1), B(x2, y2, z2), то .
Если точка М(х, у, z) делит отрезок АВ в соотношении l / m, считая от А, то координаты этой точки определяются как:
В частном случае координаты середины отрезка находятся как:
x = (x1 + x2)/2; y = (y1 + y2)/2; z = (z1 + z2)/2.
Линейные операции над векторами в координатах.
Пусть заданы векторы в прямоугольной системе координат
тогда линейные операции над ними в координатах имеют вид:
Примеры.
Пусть А(-1; 1; 0), B(3; 1; -2), . Найти:
;
и ;
.
a. .
b. .
c. .
Основные свойства функций.
1. Четность и нечетность
Функция называется четной, если
– область определения функции симметрична относительно нуля
– для любого х из области определения f(-x) = f(x)
График четной функции симметричен относительно оси 0y
Функция называется нечетной, если
– область определения функции симметрична относительно нуля
– для любого х из области определения f(-x) = –f(x)
График нечетной функции симметричен относительно начала координат.
2.Периодичность
Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т).
График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.
3. Монотонность (возрастание, убывание)
Функция f(x) возрастает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1 < x2 выполнено неравенство f(x1)< f(x2).
Функция f(x) убывает на множестве Р , если для любых x1 и x2 из этого множества, таких, что x1 < x2 выполнено неравенство f(x1) > f(x2).
4. Экстремумы
Точка Хmax называется точкой максимума функции f(x) , если для всех х из некоторой окрестности Хmax , выполнено неравенство f(х) f(Xmax).
Значение Ymax=f(Xmax) называется максимумом этой функции.
Хmax – точка максимума
Уmax – максимум
Точка Хmin называется точкой минимума функции f(x) , если для всех х из некоторой окрестности Хmin , выполнено неравенство f(х) f(Xmin).
Значение Ymin=f(Xmin) называется минимумом этой функции.
Xmin – точка минимума
Ymin – минимум
Xmin, Хmax – точки экстремума
Ymin, Уmax – экстремумы.
5. Нули функции
Нулем функции y = f(x) называется такое значение аргумента х , при котором функция обращается в нуль: f(x) = 0.
Х1,Х2,Х3 – нули функции y = f(x).
Пример 1
Найти производную функции у=С, С=const.
Решение:
- Значению х даем приращение ∆х;
- находим приращение функции ∆у: ∆у=ƒ(х+∆х)-ƒ(х)=С-С= 0;
- значит, ∆(y)/ ∆(x)=0/∆(x)=0;
- следовательно,
Пример 2
Найти производную функции у=х2.
Решение:
- Аргументу х даем приращение ∆х;
- находим ∆у: ∆у=(х+∆х)2—х2=2х•∆х+(∆х)2;
- составляем отношение
- находим предел этого отношения:
Таким образом, (х2)'=2х.
В задаче про скорость прямолинейного движения было получено
Это равенство перепишем в виде V=S't, т. е. скорость прямолинейного движения материальной точки в момент времени t есть производная от пути S по времени t. В этом заключается механический смысл производной.
Обобщая, можно сказать, что если функция y=f(x) описывает какой-либо физический процесс, то производная у' есть скорость протекания этого процесса. В этом состоит физический смысл производной.
В задаче про касательную к кривой был найден угловой коэффициент касательной
Это равенство перепишем в виде
ƒ'(х) = tga = k,
т. е. производная ƒ'(х) β точке х равна угловому коэффициенту касательной к графику функции у = ƒ(х) в точке, абсцисса которой равна х. В этом заключается геометрический смысл производной.
Таблица дифференциалов
Теорема (правило Лопиталя). Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a, и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при x→а, причем
(1)
Таким образом, коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.
Замечание. Отметим, что формула (1) справедлива только в том случае, если предел, стоящий справа, существует. Может случиться, что предел, стоящий слева существует, в то время как предел, стоящий в правой части равенства, не существует.
Например, найти . Этот предел существует . Но отношение производных (1+cosx)/1=1+cos x при x→∞ не стремится ни к какому пределу.
Заметим, что если отношение производных опять представляет собой неопределенность вида 0/0 или ∞/∞, то можно снова применить сформулированную теорему, то есть перейти к отношению вторых производных и так далее.
Вспомним, что к этим двум случаям сводятся случаи других неопределенностей: ∞·∞; 0·∞.
Для раскрытия неопределенностей 1∞, 10, ∞0 нужно прологарифмировать данную функцию и найти предел ее логарифма.
Примеры.
1. .
2. .
3. .
Дробно-линейная подстановка
Интегралы типа где а, b, с, d - действительные числа, a,b,...,d,g - натуральные числа, сводятся к интегралам от рациональной функции путем подстановки где К - наименьшее общee кратное знаменателей дробей
Действительно, из подстановки следует, что и
т. е. х и dx выражаются через рациональные функции от t. При этом и каждая степень дроби выражается через рациональную функцию от t.
Пример Найти интеграл
Решение: Наименьшее общee кратное знаменателей дробей 2/3 и 1/2 есть 6.
Поэтому полагаем х+2=t6, х=t6-2, dx=6t5 dt, Следовательно,
Пример Указать подстановку для нахождения интегралов:
Решение: Для I1 подстановка х=t2, для I2 подстановка
Интегрирование по частям
Теорема. Если функции u = u(х) и v = v(x) имеют непрерывные производные на отрезке [а; b], то имеет место формула
2.
На отрезке [а; b] имеет место равенство (uv)' = u'v+uv'. Следовательно, функция uv есть первообразная для непрерывной функции u'v+uv'. Тогда по формуле Ньютона-Лейбница имеем:
Следовательно,
Формула (.2) называется формулой интегрирования по частям для определенного интеграла.
Пример. Вычислить
Решение: Положим
Применяя формулу 2), получаем
Пример.
(х + у)×у/ = 1.
, .
Пусть
x = u×v, тогда и
v×u/ + u×v/ = x + y.
Учитывая, что х = u×v, имеем
v×(u/-v) + u×v/ = y
следовательно, lnu = y, u = ey,
Так как , то имеем .
Далее
v = -y×e-y - e-y + C.
x = u×v = -y-1 + C×ey - общее решение.
y = -y-1 + C×ey
начальные условия:
у0 = 0, х0 = 2.
2 = -1 + С Þ С = 1
х + у + 1 = еу - частное решение.
Признаки сравнения
Если , и ряд сходится, то сходится и ряд .
Если , и ряд расходится, то расходится и ряд .
Признаки сравнения можно сформулировать в такой форме:
Если заданы ряды , и существует , то ряды и сходятся либо расходятся одновременно.
Пример:
1. Исследуем сходимость ряда . Очевидно, что .
Так как гармонический ряд расходится, то и ряд также расходящийся, и, согласно признаку сравнения, данный ряд расходится.
2. Исследовать сходимость ряда . Имеем: .
Ряд сходится как сумма геометрической прогрессии со знаменателем . Следовательно, согласно признаку сравнения ряд сходится.
Признак Д’Аламбера
Если существует то:
- при ряд сходится;
- при ряд расходится.
Радикальный признак Коши
Если существует то:
- при ряд сходится;
- при ряд расходится.
Интегральный признак Коши
Пусть задан ряд , члены которого являются значениями непрерывной, положительной и монотонно убывающей функции на промежутке . Тогда ряд сходится, если сходится несобственный интеграл .
Если же расходится, то ряд также будет расходящимся.
Доказательство.
Лемма. Пусть . Тогда сходится на множестве абсолютно и равномерно.
Доказательство. Так как , ряд сходится. Так как , можно применить теорему Вейерштрасса, из которой и следует утверждение леммы.
Замечание. Лемма отнюдь не утверждает равномерной сходимости степенного ряда на . Да это, вообще говоря, и неверно. Например, прогрессия сходится на неравномерно. Однако этот ряд сходится равномерно на любом .
Пусть теперь , т.е. . Выберем так, чтобы . Тогда, по доказанной лемме, ряд сходится на абсолютно и равномерно. Поскольку все функции - непрерывные, сумма ряда есть непрерывная на функция. Значит, эта функция непрерывна и в выбранной, произвольной точке интервала .
Следствие. (Единственность степенного ряда). Пусть , и в некоторой окрестности . Тогда .
Доказательство. При получаем: . Поэтому . При . В правой и левой частях стоят степенные ряды, а они, по-доказанному, есть непрерывные функции, поэтому равенство сохраняется при , откуда и т.д. (Отметим, что здесь существенно использована непрерывность ряда в точке ).
Сформулируем без доказательства еще одну важную теорему.
Теорема. (Абель). Если ряд , имеющий сумму , сходится (хотя бы неабсолютно) при , то (т.е. сумма ряда непрерывна слева).
Теорема. Для любого .
Доказательство. Пусть удовлетворяет неравенствам . Тогда степенной ряд сходится равномерно на и его можно почленно проинтегрировать. Кроме того, . Теорема доказана.
Теорема. Для любого .
Доказательство. Выберем так, чтобы . По определению , ряд сходится. Поэтому (см. доказательство теоремы 1): . Рассмотрим величину . По признаку Даламбера, ряд сходится, т.к. . Значит, мы оценили члены ряда при членами сходящегося ряда . Применяя теорему Вейерштрасса на , получаем, что этот ряд равномерно сходится. Следовательно, почленное дифференцирование обосновано на отрезке , а значит, и в точке . Ввиду произвольности точки , теорема доказана.
Важное замечание. Из доказанных теорем вытекает, что при интегрировании и дифференцировании радиус сходимости не уменьшается. Но увеличиться он также не может. Если бы, например, он увеличился и стал равен при интегрировании, мы продифференцировали бы этот полученный при интегрировании ряд и получили бы с одной стороны, ряд, совпадающий с исходным, а с другой стороны, имеющий радиус сходимости не меньший, чем (по доказанному).
Итак, радиус сходимости степенного ряда не меняется при почленном интегрировании и дифференцировании.
Однако поведение в концевых точках может меняться. Например, ряд сходится на . При этом ряд , получающийся из исходного дифференцированием, сходится только на , а прогрессия , получающаяся при дифференцировании ряда (сходящегося на ), сходится на .
Рассмотрим теперь функцию , представляемую степенным рядом в области его сходимости. Очевидно, . Далее, последовательно применяем теорему о почленном дифференцировании ряда. , откуда . , откуда . , и т.д. .
Следовательно, при всех . Таким образом, . Это можно сформулировать так: степенной ряд, сходящийся к , представляет собой ряд Тейлора для своей суммы .
Если имеет производные произвольного порядка в точке , то можно образовать соответствующий ей ряд Тейлора: .
Важное замечание. Не всегда этот ряд сходится к самой функции . Например, нетрудно доказать, что функция имеет производные произвольного порядка в точке и все они равны 0, т.е. . Ряд Тейлора этой функции тождественно равен 0 и не совпадает с .
Необходимое и достаточное условие для того, чтобы ряд Тейлора функции сходился к самой функции , можно сформулировать так: остаток должен стремиться к 0 при .
Блок «Высшая математика».
Понятие матриц. Виды матриц.
Определение. Матрицей размера m´n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.
А =
Основные действия над матрицами.
Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.
Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной.
Определение. Матрица вида:
= E,
называется единичной матрицей.
Определение. Если amn = anm , то матрица называется симметрической.
Пример . - симметрическая матрица
Определение. Квадратная матрица вида называется диагональной матрицей.
Дата: 2019-12-22, просмотров: 255.