Биологическая роль кетоновых тел
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В плазме крови здорового человека кетоновые тела содержатся в весьма незначительных концентрациях. Однако при патологических состояниях (длительное голодание, тяжёлая физическая нагрузка, тяжёлая форма сахарного диабета) концентрация кетоновых тел может значительно повышаться и достигать 20 ммоль/л (кетонемия). Кетонемия (повышение концентрации кетоновых тел в крови) возникает при нарушении равновесия — скорость синтеза кетоновых тел превышает скорость их утилизации периферическими тканями организма.[2]

Холестерол, строение, функции.

 

Холестери́н (др.-греч. χολή — желчь и στερεός — твёрдый; синоним: холестерол) — органическое соединение, природный жирный (липофильный) спирт, содержащийся в клеточных мембранах всех живых организмов за исключением безъядерных (прокариоты). Нерастворим в воде, растворим в жирах и органических растворителях. Около 80 % холестерина вырабатывается самим организмом (печенью, кишечником, почками, надпочечниками, половыми железами), остальные 20 % поступают с пищей[1]. В организме находится 80 % свободного и 20 % связанного холестерина. Холестерин обеспечивает стабильность клеточных мембран в широком интервале температур. Он необходим для выработки витамина D, выработки надпочечниками различных стероидных гормонов, включаякортизол, альдостерон, женских половых гормонов эстрогенов и прогестерона, мужского полового гормонатестостерона, а по последним данным — играет важную роль в деятельности синапсов головного мозга и иммунной системы, включая защиту от рака[2][нет в источнике]

Биосинтез холестерина

Холестерин может образовываться в животном организме и поступать в него с пищей.

В настоящее время установлена следующая цепь биосинтеза холестерина (основа биосинтеза и других стероидов), включающая в себя несколько ступеней.

· Превращение трёх молекул активного ацетата в пятиуглеродный мевалонат. Происходит в ГЭПР.

· Превращение мевалоната в активный изопреноид — изопентенилпирофосфат.

· Образование тридцатиуглеродного изопреноида сквалена из шести молекул изопентенилдифосфата.

· Циклизация сквалена в ланостерин.

· Последующее превращение ланостерина в холестерин.

У некоторых организмов при синтезе стероидов могут встречаться другие варианты реакций (например, немевалонатный путь образования пятиуглеродных молекул)

 

 

Переваривание белков.

 

Пути использования аминокислот в организме.

Существуют многообразные пути использования аминокислот после всасывания в кишечнике. Поступив через воротную вену в печень, они прежде всего подвергаются ряду превращений (хотя значительная часть аминокислот разносится кровью по вceму организму и используется для физиологических целей). В печени аминокислоты участвуют не только в биосинтезе собственных белков и белков плазмы крови, но также в синтезе специфических азотсодержащих соединений: пуриновых и пиримидиновых нуклеотидов, креатина, мочевой кислоты, НАД и др.

Дезаминирование АК.

Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты реакции. Во всех случаях NH2-группа аминокислоты освобождается в виде аммиака.

Помимо аммиака, продуктами дезаминирования являются жирные кислоты, оксикислоты и кетокислоты. Для животных тканей, растений и большинства аэробных микроорганизмов преобладающим типом реакций является окислительное дезаминирование аминокислот, за исключением гис-тидина, подвергающегося внутримолекулярному дезаминированию.

Дата: 2016-10-02, просмотров: 258.