Необходимо рассмотреть несколько теоретических моментов.
Теорема 1. Функция является решением линейного однородного дифференциального уравнения есть характеристический корень.
Доказательство. Ищем решение в виде .
Если , то , , ... .
Подставим в уравнение .
Получим .
Во всех слагаемых одинаковая экспонента, вынесем её за скобку:
.
Но поскольку , то .
Что и требовалось доказать.
Теорема 2. Линейная комбинация решений линейного однородного дифференциального уравнения тоже является его решением.
Доказательство. (ДОК 23)
Пусть и - два различных решения уравнения
.
То есть, они оба обращают его в тождество:
и
.
Надо доказать, что линейная комбинация тоже подходит в качестве решения. Известно, что для производной, а также и последующих выполняется свойство линейности: , поэтому , , и т.д.
Тогда, подставляя линейную комбинацию в дифференциальное уравнение, получим:
=
Но ведь в каждой скобке 0, так как каждая из этих функция была решением уравнения. Получается .
Таким образом, линейная комбинация решений тоже является решением линейного уравнения.
Задача 1. Решить уравнение .
Решение. Характеристическое уравнение: , оно сводится к виду , корни , . Тогда решениями могут быть только и . Сделаем проверку для каждой из экспонент. Подставим каждую из них в уравнение.
1) = .
2) = .
Проверка выполнена. Обе экспоненты являются решениями.
При этом никакая третья экспонента не может служить решением этого же уравнения, потому что характеристический многочлен 2-й степени, и он имеет максимум 2 корня.
Их линейная комбинация .
Ответ. .
Задача 2. Найти общее решение дифф. уравнения .
Решение. Характеристическое уравнение: , его корни
1 и . Тогда ФСР = , и общее решение: .
Ответ. .
Задача 3. Найти частное решение дифф. уравнения при условиях Коши: .
Решение. Характеристическое уравнение: , его корни: , . Тогда ФСР состоит из и , общее решение такое: .
Теперь найдём решение задачи Коши. Сначала запишем функцию и её производную: и .
Кроме того, у нас есть информация: .
Тогда , . Получается система уравнений
вычитая 1-е уравнение из 2-го, находим, , т.е. , тогда . Тогда частное решение: .
Ответ. Общее решение , частное .
Задача 4. Решить уравнение , найти частное решения для условий Коши: .
Решение. Характеристическое уравнение: , его корни: , . Тогда ФСР состоит из , общее решение такое: .
Теперь найдём решение задачи Коши. Сначала запишем функцию и её производную:
и .
Кроме того, у нас есть информация: .
Ищем частное решение.
,
,
Получается система уравнений
, решая её, находим из 2-го ,
откуда , . Тогда частное решение: .
Ответ. .
Если - корень кратности , то в системе решений будут присутствовать , то есть одну и ту же экспоненту раз включать в фундаменатльную систему решений нельзя, иначе фактическое количество функций в ФСР получится меньше, чем n.
Кроме самой экспоненты, нужно взять ещё и с домножением на степенные, по нарастанию степеней до .
Задача 5. Решить уравнение .
Решение. Характеристическое уравнение: , то есть , характеристическое корни . Тогда ФСР: , а общее решение: .
Ответ. .
Сделаем проверку. Для очевидно. Проверим .
, тогда , .
= = = = 0.
Если один из корней 0, то в ФСР присутствует экспонента вида , то есть контанта 1 принадлежит ФСР.
Задача 6. Решить уравнение .
Решение. Характеристическое уравнение: , корни 0 и 5. Тогда ФСР: , а общее решение: .
Ответ. .
***
Ещё одно небольшое теоретическое отступление. Докажем, что если 0 является корнем кратности , то система решений, соответствующих этому корню, имеет вид , то есть . Характеристическое уравнение обязательно имеет вид , так как можно вынести за скобку 0 корень кратности . Но это значит, что исходное дифференциальное уравнение имеет вид .
Оно содержит производные порядка и выше. Известно, что если степенную функцию продифференцировать столько раз, какова её степень, то получим константу, а если большее количество раз, то обратится в 0. Так, например,
, .
В данном уравнении производные порядка и выше. Любая из степенных функций порядка и ниже, а именно взятая из набора , является решением.
Случай комплексных корней. Если присутствуют два сопряжённых корня то общее решение: .
Задача 7. Найти общее решение уравнения .
Решение. Характеристическое уравнение: .
Ищем его корни. . Корни = =
= . Найдём действительную и мнимую части функции = = = .
Две линейно-независимых функции образуют ФСР:
и . Общее решение: .
Ответ. .
Проверка. Проверим, например, одно из слагаемых.
= .
Подставим в уравнение. = 0.
Задача 8. Найти общее решение уравнения .
Решение. Характеристическое уравнение: , т.е. корни , то есть . Две линейно-независимых функции образуют ФСР: и .
Общее решение: .
Ответ. .
Дата: 2019-11-01, просмотров: 200.