Многомерные методы обработки данных как дальнейшее развитие эмпирической математической модели в отношении многостороннего описания изучаемых явлений. Проблема искусственного интеллекта и программная реализация многомерных методов. Классификация многомерных методов обработки данных: по назначению, по способу сопоставления данных, по виду исходных данных.
Общее знакомство с методами многомерной обработки данных (назначение каждого метода и сфера его применения; математико-статистические идеи метода; исходные данные и требования к ним; процедура и результаты): множественный регрессионный анализ (МРА) как метод экстраполяции; множественный дискриминантный анализ как распознавание образов ("классификация с обучением"); кластерный анализ как метод классификации автоматическая классификация, таксономический анализ, анализ образов без обучения); факторный анализ как метод структурирования эмпирической информации; многомерное шкалирование как метод выявления структуры множества объектов. Различные метрики в методах классификации и шкалирования.
Факторный анализ, его сущность и виды. Основные понятия факторного анализа. Этапы проведения факторного анализа.
Примеры использования многомерной обработки данных.
Математико-статистическая обработка результатов психологического исследования с использованием компьютерного пакета Statistica , SPSS , Statgrafic . Возможности и ограничения конкретных компьютерных методов обработки данных.
Методические рекомендации к изучению темы
Данная тема является наиболее сложной в курсе. Обратите внимание на то, что общее знакомство с многомерными методами предполагает знание назначения каждого метода, его общие математико-статистические идеи, требования к исходным данным или — иначе ограничения в применении метода, основные его результаты. Именно с этих позиций и описываются в лекциях многомерные методы. Для более полного знакомства с ними рекомендуем воспользоваться в первую очередь учебником Наследова А. Д.
Факторный анализ рассмотрен более подробно ввиду более широкого его использования.
После изучения материала лекции ответьте на контрольные вопросы, ответы занесите в конспект и сохраните его до экзамена.
Материалы лекции.
Роль математических методов в любой области знания (не только в психологии) — представление эмпирических данных в пригодном для интерпретации виде, поиск смысла в исходной эмпирической информации.
Наследов А. Д. вводит понятие эмпирической математической модели (ЭММ), которые идентичны мыслительным операциям. Эти модели он называет описательными, так как они представляют данные, полученные в исследовании, в удобном для интерпретации виде. Простейшие ЭММ — это, например, средние арифметические значения, вычисляемые для сравниваемых выборок в предположении, что различия в средних отражают различия между представителями групп (напомним, что среднее арифметическое значение отражает тенденцию выраженности свойства в выборке); ранжирование членов группы, которое предполагает, что порядковый номер испытуемого в группе (ранг) отражает выраженность изучаемого свойства; коэффициент корреляции между двумя признаками отражает взаимосвязь между ними, при этом мы исходим из предположения о согласованности индивидуальной изменчивости признаков и т.п.
Непосредственно сравнивать, различать, определять взаимосвязь и т.д. мы можем только при небольшой численности испытуемых и признаков. В других случаях, при небольшом числе испытуемых и признаков, мы пользуемся для расчетов калькулятором. Когда выборка большого объема и каждый испытуемый описан большим числом признаков, простейшие ЭММ мало пригодны, тогда возникает необходимость применения многомерных методов анализа и компьютера.
Многомерные методы анализа — дальнейшее развитие ЭММ в отношении многостороннего описания изучаемых явлений. Как и простейшие ЭММ, они воспроизводят мыслительные операции человека, но в отношении таких данных, непосредственное осмысление которых невозможно в силу нашей природной ограниченности. Программные реализации многомерных методов анализа относятся к области искусственного интеллекта. Многомерные методы выполняют такие интеллектуальные функции, как структурирование эмпирической информации, классификация, экстраполяция, распознавание образов и т.д.
К наиболее часто употребляемым в психологии многомерным методам анализа экспериментальных данных относятся множественный регрессионный анализ, дискриминантный анализ, кластерный анализ, факторный анализ, многомерное шкалирование и др. Эти методы можно классифицировать по трем основаниям:
А) интеллектуальная операция (или способ преобразования исходной информации) — по назначению метода;
Б) по способу сопоставления данных — по сходству (различию) или пропорциональности (корреляции);
В) по виду исходных эмпирических данных.
I . Классификация методов по назначению:
1. Методы предсказания (экстраполяции): множественный регрессионный и дискриминантный анализ. Множественный регрессионный анализ предсказывает значения метрической «зависимой» переменной по множеству известных значений «независимых» переменных, измеренных у множества объектов (испытуемых). Дискриминантный анализ предсказывает принадлежность объектов (испытуемых) к одному из известных классов (номинативной шкале) по измеренным метрическим (дискриминантным) переменным.
2. Методы классификации: варианты кластерного анализа и дискриминантный анализ. Кластерный анализ («классификация без обучения») по измеренным характеристикам у множества объектов (испытуемых) либо по данным об их попарном сходстве (различии) разбивает это множество объектов на группы, в каждой из которых содержатся объекты, более похожие друг на друга, чем на объекты из других групп. Дискриминантный анализ («классификация с обучением», «распознавание образов») позволяет классифицировать объекты по известным классам, исходя из измеренных у них признаков, пользуясь решающими правилами, выработанными предварительно на выборке идентичных объектов, у которых были измерены те же признаки.
3. Структурные методы: факторный анализ и многомерное шкалирование. Факторный анализ направлен на выявление структуры переменных как совокупности факторов, каждый из которых — это скрытая, обобщающая при чина взаимосвязи группы переменных. Многомерное шкалирование выявляет шкалы как критерии, по которым поляризуются объекты при их субъективном попарном сравнении.
II . Классификация методов по исходным предположениям о структуре данных:
1. Методы, исходящие из предположения о согласованной изменчивости признаков, измеренных у множества объектов: факторный анализ, множественный регрессионный анализ, отчасти — дискриминантный анализ.
2. Методы, исходящие из предположения о том, что различия между объек тами можно описать как расстояние между ними. На дистантной модели основаны кластерный анализ и многомерное шкалирование, частично — дискриминантный анализ. Многомерное шкалирование и дискриминантный анализ добавляют предположение о том, что исходные различия между объектами можно представить как расстояния между ними в пространстве небольшого числа шкал (функций).
III . Классификация методов по виду исходных данных:
1. Методы, использующие в качестве исходных данных только признаки, измеренные у группы объектов. Это множественный регрессионный анализ, дискриминантный анализ и факторный анализ.
2. Методы, исходными данными для которых могут быть попарные сход ства (различия) между объектами: это кластерный анализ и многомерное шкалирование. Многомерное шкалирование, кроме того, может анализировать данные о попарном сходстве между совокупностью объектов, оцененном группой экспертов. При этом совместно анализируются как различия между объектами, так и индивидуальные различия между экспертами.
Представленные классификации свидетельствуют о необходимости знаний многомерных методов, их возможностей и ограничений уже на стадии общего замысла исследования. Например, ориентируясь только на факторно-аналитическую модель, исследователь ограничен в выборе процедуры диагностики: она должна состоять в измерении признаков у множества объектов. При этом исследователь ограничен и в направлении поиска: он изучает либо взаимосвязи между признаками, либо межгрупповые различия по измеряемым признакам. Общая осведомленность о других многомерных методах позволит исследователю использовать более широкий круг психодиагностических процедур, решать более широкий спектр не только научных, но и практических задач.
Применение многомерных методов требует, разумеется, не только самого компьютера, но и соответствующего программного обеспечения. Широко известны и распространены универсальные статистические программы SТАТISТIСА и SPSS, содержащие практически весь спектр статистических методов — от простейших до самых современных. Наследов А. Д. пишет о том, что он разделяет мнение, что программа SТАТISТIСА обладает прекрасной графикой и гибкостью в обработке данных. Однако программа SPSS имеет свои преимущества: она не только проще в освоении и применении, но и включает в себя ряд методов, отсутствующих в SТАТISТIСА, например, варианты многомерного шкалирования.
Дата: 2019-11-01, просмотров: 279.