Уровень статистической значимости
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

При обосновании статистического вывода следует решить вопрос, где же проходит линия между принятием и отвержени­ем нулевой гипотезы? В силу наличия в эксперименте случайных влияний эта граница не может быть проведена абсолютно точно. Она базируется на понятии уровня значимости. Уровнем значимо­сти называется вероятность ошибочного отклонения нулевой гипотезы. Или, иными словами, уровень значимости — это вероят­ность ошибки первого рода при принятии решения. Для обозна­чения этой вероятности, как правило, употребляют либо гречес­кую букву α, либо латинскую букву р. В дальнейшем мы будем употреблять букву р.

Исторически сложилось так, что в прикладных науках, ис­пользующих статистику, и в частности в психологии, считается, что низшим уровнем статистической значимости является уровень р = 0,05; достаточным — уровень р = 0,01 и высшим уровень р = 0,001. Поэтому в статистических таблицах, которые приводятся в приложении к учебникам по статистике, обычно даются таблич­ные значения для уровней р = 0,05, р = 0,01 и р = 0,001. Иногда даются табличные значения для уровней р — 0,025 и р = 0,005.

Величины 0,05, 0,01 и 0,001 — это так называемые стандарт­ные уровни статистической значимости. При статистическом анализе экспериментальных данных психолог в зависимости от задач и гипотез исследования должен выбрать необходимый уро­вень значимости. Как видим, здесь наибольшая величина, или нижняя граница уровня статистической значимости, равняется 0,05 — это означает, что допускается пять ошибок в выборке из ста элементов (случаев, испытуемых) или одна ошибка из двад­цати элементов (случаев, испытуемых). Считается, что ни шесть, ни семь, ни большее количество раз из ста мы ошибиться не можем. Цена таких ошибок будет слишком велика.

Заметим, что в современных статистических пакетах на ЭВМ используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответ­ствующим статистическим методом. Эти уровни, обозначаемые буквой р, могут иметь различное числовое выражение в интер­вале от 0 до 1, например, р = 0,7, р = 0,23 или р = 0,012. Понятно, что в первых двух случаях полученные уровни значимос­ти слишком велики и говорить о том, что результат значим нельзя. В то же время в последнем случае результаты значимы на уровне 12 тысячных. Это достоверный уровень.

Правило принятия статистического вывода таково: на осно­вании полученных экспериментальных данных психолог подсчи­тывает по выбранному им статистическому методу так называе­мую эмпирическую статистику, или эмпирическое значение. Эту величину удобно обозначить как Чэмп. Затем эмпирическая стати­стика Чэмп сравнивается с двумя критическими величинами, ко­торые соответствуют уровням значимости в 5% и в 1% для выб­ранного статистического метода и которые обозначаются как Чкр. Величины Чкр находятся для данного статистического метода по соответствующим таблицам, приведенным в приложении к лю­бому учебнику по статистике. Эти величины, как правило, все­гда различны и их в дальнейшем для удобства можно назвать как Чкр1 и Чкр2. Найденные по таблицам величины критических значений Чкр1 и Чкр2 удобно представлять в следующей стандартной форме записи:

 

 

Подчеркнем, однако, что мы использовали обозначения Чэмп и Чкр как сокращение слова «число». Во всех статистических методах приняты свои символические обозначения всех этих вели­чин: как подсчитанной по соответствующему статистическому методу эмпирической величины, так и найденных по соответ­ствующим таблицам критических величин. Например, при под­счете рангового коэффициента корреляции Спирмена по таблице критических значений этого коэффициента были найдены сле­дующие величины критических значений, которые для этого мето­да обозначаются греческой буквой ρ («ро»). Так для р = 0,05 по таб­лице найдена величина ρкр1 = 0,61 и для р = 0,01 величина ρкр2 = 0,76.

В принятой в дальнейшем изложении стандартной форме за­ за­писи это выглядит следующим образом:

Теперь нам необходимо сравнить наше эмпирическое значе­ние с двумя найденными по таблицам критическими значения­ми. Лучше всего это сделать, расположив все три числа на так называемой «оси значимости». «Ось значимости» представляет собой прямую, на левом конце которой располагается 0, хотя он, как правило, не отмечается на самой этой прямой, и слева направо идет увеличение числового ряда. По сути дела это при­вычная школьная ось абсцисс ОХ декартовой системы координат. Однако особенность этой оси в том, что на ней выделено три участка, «зоны». Одна крайняя зона называется зоной незначимости, вторая крайняя зона — зоной значимости, а промежуточная — зоной неопреде­ленности. Границами всех трех зон являются Чкр1 для р = 0,05 и Чкр2 для р = 0,01, как это показано на рисунке.

В зависимости от правила принятия решения (правила вывода), предписанного в данном статистическом методе возможно два варианта.

Первый вариант: альтернативная гипотеза принимается, если ЧэмпЧкр.

 

Или второй вариант: альтернативная гипотеза принимается, если ЧэмпЧкр.

 

Подсчитанное Чэмп по какому либо статистическому методу должно обязательно попасть в одну из трех зон.

Если эмпирическое значение попадает в зону незначимости, то принимается гипотеза Н0 об отсутствии различий.

Если Чэмп попало в зону значимости, принимается альтернативная гипотеза Н1 о на­личии различий, а гипотеза Н0 отклоняется.

Если Чэмп попадает в зону неопределенности, перед исследователем стоит дилемма. Так, в зависи­мости от важности решаемой задачи он может считать полученную статистическую оценку достоверной на уровне 5%, и принять, тем самым гипотезу Н1, отклонив гипотезу Н0, либо — недостоверной на уровне 1%, приняв тем самым, гипотезу Н0. Подчеркнем, одна­ко, что это именно тот случай, когда психолог может допустить ошибки первого или второго рода. Как уже говорилось выше, в этих обстоятельствах лучше всего увеличить объем выборки.

Подчеркнем также, что величина Чэмп может точно совпасть либо с Чкр1  либо Чкр2. В первом случае можно считать, что оценка достоверна точно на уровне в 5% и принять гипотезу Н1, или, напротив, принять гипотезу Н0. Во втором случае, как пра­вило, принимается альтернативная гипотеза Н1 о наличии разли­чий, а гипотеза Н0 отклоняется.

Дата: 2019-11-01, просмотров: 245.