Когда отношение толерантности оказывается транзитивным, т.е. превращается в свой частный случай – в отношение эквивалентности, то классы толерантности превращакугся в классы эквивалентности. Так как классы эквивалентности не пересекаются, справедлива
Лемма. Отношение толерантности янлнигся отношением эквивалентности тогда и только тогда, когда классы толерантности не пересекаются друг с другом.
Вернемся теперь к изучению отображения , построенного в процессе доказательства теоремы 2.3.1 и выясним, какие элементы из имеют одинаковый образ при отображении , т.е. отчего бывает не инъективным.
Определение
Пусть – пространство толерантности. Множество называется ядром, если существует такая совокупность классов , , , что есть совокупность всех элементов из , каждый из которых входит во все эти и только эти классы.
Ядра – это прообразы при отображении . Действительно, ядро состоит из всех тex элементов , для которых образ есть именно это множество классов толерантности: . Отсюда ясно, что непустые ядра образуют разбиение, множества и тем самым задают отношение эквивалентности. Мы попробуем разобраться, как это отношение связано с исходной толерантностью.
Пусть задано пространство толерантности , Далее мы будем обозначать через множество всех элементов, толерантных к . Отношение на определим условием
Иначе говоря, означает, что и толерантны к одним идем же элементам.
Лемма. Для того чтобы выполнялось соотношение , необходимо и достаточно, чтобы и лежали в одном и том же ядре .
Доказательство. Пусть и принадлежат ядру . По лемме 2.3.3 множество состоит из всех элементов, входящих хотя бы в один из классов Но то же самое справедливо и для множества , т.е. или . Обратно. Предположим, что , и пусть принадлежит некоторому классу . Тогда для любого будет выполнено соотношение . В силу выполнено и . Значит, (поскольку – максимальный предкласс). Аналогично показывается, что всякий класс, содержащий , содержит одновременно . Итак, и принадлежат одной и той же совокупности классов, а значит, и общему ядру. Лемма доказана.
Следствие. Отношение есть эквивалентность, а непустые ядра сложат для классами эквивалентности.
Отметим очевидное включение
В случае эквивалентности классы не пересекаются и каждое ядро совпадает со своим классом толерантности: , и, кроме того, для любого .
Заметим, что при обобщении понятия эквивалентности – переходе к толерантности – понятие класса эквивалентности расщепляется на два разных понятия – класс толерантности и ядро.
Определение
Пространство толерантности называется безъядерным, если каждое ядро состоит не более чем из одного элемента.
Для безъядерных пространств, толерантности основная классификационная теорема (тeopeмa 2.3.1) может быть уточнена так:
Теорема. Пусть – безъядерное пространство толерантности, а – множество всех есо классов толерантности. Тогда существует инъективное отображение такое, что элементы из толерантны в том и только том случае, когда толерантны их образы в .
Для конечных пространств с нетривиальными ядрами можно применить тот же прием, который был уже использован для задания признаками эквивалентности. А именно, выберем в каждом ядре свою нумерацию. Сопоставим каждому элементу конечного пространства набор номеров , где – те же самые номера, что и в 3, а – номер элемента в своем ядре. Ясно, что элемент однозначно определяется целочисленными признаками , а толерантность пары определяется совпадением одного из признаков .
Пусть теперь – произвольное прострапсизо толерантности. Обозначим через множество его ядер и определим толераниюсть ядер и условием: , если существуют представители и , толерантные в . Так как элементы одного ядра имеют общее множество толерантных с ними элементов, то из , следует, что для любых и выполнено . Мы получили новое пространство . Можно убедиться, что оно будет безъядерным. Ясно Ясно также, что равносильно , где и – содержащие эти элементы ядра.
Теперь заметим, что ядра можно было бы определять не с помощью полного запаса классов, а только с помощью классов, принадлежащих некоторому базису . Пусть – некоторая совокупность классов из базиса . Ядром относительно базиса мы назовем совокупность всех элементов из , каждый из которых входит во все эти классы и не входит ни в какие другие классы из базиса .
Лемма. Разиение множества на ядра относительно базиса совпадает с разбиением множества на обычные ядра.
Доказательство. Буквально повторяя доказательство леммы 2.5.1, мы получим, что ядра, определенные по базису – это классы эквивалентности по . Значит, они совпадают с исходными ядрами.
Теорема. Если пространство толерантности имеет конечный базис , то совокупность всех классов толерантности в конечна.
Доказательство. В силу леммы 2.5.2 число ядер конечно, т.е. конечно пространство ядер . Значит, имеет конечное число классов толераитпости. Но так как равносильно , то каждый класс толерантности в есть объединение ядер, образующих соответствующий класс толерантности в . Таким образом, совокупность всех классов толерантности в конечна.
Обратим внимание, что ни в формулировке теоремы, ни в ее доказательстве не предполагается, что конечно. Оно и фактически может быть бесконечным за счет бесконечности ядер.
Дата: 2019-07-30, просмотров: 230.