Вакуумирования циркуляционного типа
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Процесс циркуляционного вакуумирования заключается в обработке вакуумом металла, непрерывно текущего через вакуумкамеру по двум патрубкам, опущенным в сталеразливочный ковш с расплавом. Для обеспечения непрерывного подъема металла в камеру в один из патрубков подается аргон, пузырьки которого в результате большой разницы плотностей , поднимаясь вверх по патрубку, увлекают за собой расплав выполняя функции транспортирующего газа. В камере металл дегазируется и, становясь более плотным и тяжелым, сливается по второму патрубку в ковш.

Во время прохождения жидкого метала через вакуумкамеру под действием разрежения, создаваемого пароэжекторным насосом, происходят процессы удаления из стали растворенных газов (кислорода, водорода, частично азота), углеродное раскисление или обезуглероживание стали. Выделяющиеся в вакуум пузыри моноокиси углерода и инертного газа (аргона), приводят к интенсивному диспергированию металла и интенсификации процессов дегазации и перемешиванию стали в вакуумкамере. Вследствие повышения раскислительной способности углерода при низких парциальных давлениях моноокиси углерода, значительная часть кислорода (до 60 %) удаляется из стали в виде СО, что повышает чистоту металла по содержанию в нем неметаллических включений и уменьшает угар элементов-раскислителей, вводимых в сталь. Снижение активности кислорода в металле при вакуумировании, наряду с интенсивным перемешиванием жидкой стали в вакуумкамере, способствует лучшему усвоению присаживаемых добавок [27].

С целью увеличения срока службы вакуумной камеры и патрубков, в начале обработки и за 1 минуту до окончания вакуумирования на поверхность металла в вакууматоре через вакуумный шлюз подают порцию нейтрализатора шлака в количестве 50…100 кг. В качестве нейтрализатора шлака применяют брикеты на основе глинозема (Al2O3).

Для снижения тепловых потерь металла при вакуумировании и улучшения условий службы огнеупоров, футеровка вакуумкамеры постоянно поддерживается в разогретом состоянии (1450…15000С) за счет теплоизлучения графитового нагревателя, являющегося резисторным элементом электрической системы разогрева вакуумкамеры. С целью уменьшения эрозии футеровки вакуумкамеры и патрубков, в периоды между обработками плавок на УЦВС, объем вакуумкамеры заполняется азотом, а патрубки погружаются в песок.

Ферросплавы, используемые на установке циркуляционного вакуумирования стали, должны иметь фракцию от 5 до 50 мм и соответствовать требованиям государственных стандартов и технических условий. Влажность не должна превышать 1 %.

Применяемый на установке нейтрализатор шлака должен отвечать требованиям СТП-101-73-89.

Газообразный аргон, с массовой долей аргона не менее 99,5 % должен соответствовать требованиям ГОСТ 10157-79. Азот – ГОСТ 9293-74. Давление газов в сети должно быть не менее 0,8 МПа.

К началу вакуумной обработки стали установка должна быть полностью подготовлена к работе. Это означает:

А. Все механизмы, органы управления и футеровка вакуумкамеры находятся в исправном состоянии.

Б. Установка обеспечена всеми необходимыми энергоресурсами требуемых параметров:

- аргон и азот: давление 0,8…1,0 МПа;

- вода технически очищенная на пароэжекторный насос: давление 0,1…0,4 МПа с температурой не более 35 0С;

- вода химически очищенная на механизм электронагрева: давление 0,5 МПа;

- сжатый воздух: давление 0,7 МПа;

- пар: давление 1,3 МПа и температура 200 ± 50 0С;

- электроэнергия: рабочее напряжение 36…360 В;

- вода технически очищенная на газоохладитель и уплотнения: давление 0,5 МПа.

В. Все системы сигнализации и АСУ ТП «Вакуумирование» исправны.

Г. Футеровка вакуумкамеры нагрета до температуры не менее 14500С (измеряется термодатчиками и отображается на дисплеях АСУ ТП).

Сталеразливочный ковш, подаваемый под плавку для вакуумирования, должен иметь исправную сухую футеровку без мусора и настылей. Толщина шлака в ковше должна быть не более 100 мм, а уровень наполнения ковша металлом и шлаком – на 100…150 мм ниже верхней кромки ковша.

Цикл вакуумной обработки начинается с установки шлакоотделителей на патрубки вакуумной камеры. При погружении вакуумной камеры в металл, в ней создают избыточное кратковременное давление азота для вытеснения попавшего в патрубки шлака. Погружение патрубков производят до глубины, предотвращающей подсосы воздуха и ковшевого шлака в камеру. Затем включается вакуумный насосный агрегат, и металл вследствие разности давлений между камерой и атмосферой поднимается по обоим патрубкам в камеру на барометрическую высоту (около 1,4 м). Одновременно в нижнюю часть всасывающего патрубка подается аргон, который, поднимаясь вверх и увеличиваясь в объеме, образует газо-металлическую эмульсию с соотношением газа к металлу 10:1. Со скоростью более 5 м/с такая эмульсия врывается в камеру, образуя высокий бурун над всасывающим патрубком. Наличие большого количества транспортирующего газа способствует созданию огромной дополнительной реакционной поверхности, интенсифицируя процесс дегазации металла. Этим объясняется то обстоятельство, что, несмотря на сравнительно небольшое время пребывания расплава в камере, обычно не превышающее нескольких секунд, металл поступает в сливной патрубок практически полностью дегазированным. Из сливного патрубка этот металл, попадая снова в ковш, смешивается с находящимся в нем расплавом, несколько разбавляя в нем содержание газов. Поэтому для более глубокой дегазации весь металл ковша необходимо пропустить через камеру не менее 2,5…5 раз в зависимости от степени раскисления [25].

В зависимости от назначения металлопродукции, а также технологических целей использования вакуумной установки, различают следующие виды обработки стали:

- глубокое удаление водорода, вакуумное углеродное раскисление, рафинирование от неметаллических включений, доводка по химическому составу и температуре, окончательное раскисление и легирование алюминием;

- доводка по химическому составу и температуре, окончательное раскисление алюминием и удаление водорода;

- глубокое обезуглероживание стали в вакууме, дегазация, доводка по химическому составу и температуре, раскисление;

- усреднение и коррекция химического состава и температуры, а также окончательное раскисление.

Вакуумированию подвергаются плавки как непосредственно после выпуска из конвертера, так и после обработки на агрегате «печь-ковш». Для проведения всех технологических операций при вакуумировании стали типа 08Ю, выпуск из конвертера должен производиться не менее, чем за 60 минут до начала разливки на МНЛЗ, а для трансформаторной стали – не менее 80 минут.

Перед началом обработки измеряют температуру металла, толщину слоя шлака в ковше и отбирают пробу для определения химического состава стали. Температура металла измеряется термопарой погружения и отображается на измерительном приборе. Температура металла в ковше перед вакуумированием должна быть на 40…50 0С выше температуры разливки, но не более 1630 0С. При температуре металла выше требуемой до начала вакуумирования производится охлаждение металла слябом.

По данным измерений и результатам химического анализа пробы стали, отобранной перед вакуумированием, учитывая массу плавки и заказанную марку стали, оператор выбирает программу обработки и режим управления. Процесс вакуумирования может производиться в автоматическом или ручном режиме. В первом случае оператор вводит программу в ЭВМ АСУ ТП «Вакуумирование» и по команде оператора вакууматор включается в работу по заданной программе. Вакуумирование в ручном режиме осуществляет оператор с пульта управления, при этом он имеет возможность воспользоваться режимом «совет мастера».

Вакуумное обезуглероживание низкоуглеродистой нераскисленной стали производится до минимально возможного снижения остаточного давления в вакуумной камере (менее 1 мм.рт.ст.) и до достижения кратности циркуляции не менее трех. Известно также, что обработка металла при давлении более 0,53 кПа (4 мм.рт.ст.) не обеспечивает требуемую дегазацию стали.

Длительность вакуумирования определяется совокупностью осуществляемых технологических операций и регламентируется скоростью циркуляции, которая зависит от расхода аргона и внутреннего диаметра патрубков.

Масса, марочный сортамент и очередность присаживаемых ферросплавов и раскислителей в вакуумную камеру определяется маркой стали и технологией вакуумной обработки. Корректирующие присадки среднеуглеродистого (до 2 % углерода) и высокоуглеродистого (до 7 % углерода) ферромарганца при обработке особонизкоуглеродистых марок стали производятся в период вакуумного обезуглероживания.

Присадки материалов в вакуумкамеру осуществляются со скоростью не более 2 т/мин. При этом масса одной порции не должна превышать : ферромарганец – 350 кг; ферросилиций – 250 кг; силикомарганец – 350 кг; ферованадий – 250 кг; ферротитан – 250 кг; алюминий – 250 кг; нейтрализатор шлака – 100 кг; руда, окатыши, агломерат – 50 кг; углеродосодержащий материал – 50 кг; скрап, сечка – 350 кг [21].

При расчете количества присадок на плавку в процессе вакуумной обработки руководствуются следующими ориентировочными величинами усвоения элементов: марганец – 90…95 %; кремний – 85…90 %; алюминий – 30…60 %; титан – 50…70 %; углерод – 40…50 %; ванадий – 80…90 %; ниобий – 80…90 % [26].

После введения добавок для корректировки химического состава стали и раскисления производится перемешивание металла с кратностью циркуляции не менее 0,5 в течение 3…5 минут. Расход аргона в подъемный патрубок при этом максимальный.

После окончания процесса вакуумирования, закрывают главный вакуумный затвор, выключают вакуумный насос, включают систему заполнения вакуумкамеры азотом. При достижении атмосферного давления, вакуумкамера поднимается из сталеразливочного ковша. Система подачи аргона в патрубок переключается на азот с минимальным расходом, отбирается проба стали и замеряется температура металла. При получении необходимого химического состава и заданной температуры металла ковш передается на МНЛЗ [25].

При лимите времени на вакуумную обработку, возможна корректировка химического состава стали и усреднение металла по температуре на агрегате «печь-ковш».

 



Дата: 2019-05-29, просмотров: 222.