Теорема 1. Пусть существует определенно-положительная функция Ляпунова , такая, что DV есть отрицательная функция. Тогда решение уравнения (1) устойчиво по Ляпунову.
Доказательство. Пусть — произвольная положительная постоянная, . Положим при . Так как V определенно-положительная, то . По l найдем такое, чтобы . Рассмотрим решение при . Покажем, что
. (5)
Пусть (5) не имеет места. Тогда существует такое, что , а при . В силу (3) и условия теоремы функция является при невозрастающей функцией t. Так как , то , тогда тем более , что противоречит определению T и тому, что . Таким образом, импликация (5) имеет место, а это и означает по определению устойчивость решения по Ляпунову. Теорема доказана.
Следствие. Если уравнение (1) имеет в области G определенно-положительный интеграл, не зависящий от t и уничтожающийся в начале координат, то решение устойчиво по Ляпунову.
Теорема 2. Пусть существует определенно-положительная функция Ляпунова , такая, что DV определенно-отрицательная при . Тогда решение уравнения (1) асимптотически устойчиво.
Доказательство. Условия теоремы 1 выполнены, и решение устойчиво по Ляпунову. Следовательно, существует такое, что
при . (6)
Из определения асимптотической устойчивости в силу (4) заключаем, что достаточно доказать импликацию при . В силу (3) и условия теоремы — строго убывающая функция t.
Предположим, что теорема неверна. Тогда
. (7)
Отсюда, из (6) и (4) следует, что при . По условию теоремы , где — определенно-положительная функция. Пусть . Из (3) следует, что при всех , что противоречит определенной положительности . Полученное противоречие доказывает теорему.
В случае когда уравнение автономно, условия теоремы (2) можно ослабить.
Теорема 3. Пусть уравнение (1) автономно, выполнены условия теоремы 1 и множество не содержит целиком полных траекторий уравнения (1), за исключением положения равновесия . Тогда решение асимптотически устойчиво.
Доказательство. Используем доказательство теоремы 2 до формулы (7) включительно. Далее, пусть — -предельная точка траектории . Из определения -предельной точки и (7) следует, что . По первому свойству предельных множеств (п. 1.3.) все точки траектории являются -предельными для траектории . Следовательно, для всех t, при которых определено решение , . Отсюда и из (3) следует, что при указанных t , что противоречит условию теоремы, так как не совпадает с началом координат. Теорема доказана.
Пример. Рассмотрим уравнение движения диссипативной системы с одной степенью свободы , где удовлетворяют условию Липшица при , удовлетворяет условию при и при . Докажем, что положение равновесия асимптотически устойчиво.
Соответствующая система двух уравнений имеет вид
.
В качестве функции Ляпунова возьмем полную энергию системы .
В силу условия V —определенно-положительная функция, при этом
.
Следовательно, DV —отрицательная функция и множество M — интервал оси абсцисс при . Так как при при , то множество M не содержит целых траекторий, отличных от положения равновесия .
По теореме 3 решение системы асимптотически устойчиво, что и требовалось доказать.
Перейдем к рассмотрению неустойчивости. Пусть — функция Ляпунова. Обозначим через любую связную компоненту открытого множества с началом координат на ее границе.
Теорема 4. Пусть существует функция Ляпунова такая, что не пусто и при . Тогда решение уравнения (1) неустойчиво.
Доказательство. Пусть . Будем рассматривать решения с начальной точкой . Достаточно показать, что для каждого из этих решений можно указать момент T (для каждого решения свой) такой, что .
Пусть это неверно, т. е. существует решение , удовлетворяющее при всех неравенству . Покажем, что траектория решения принадлежит при . Действительно, по определению она может покинуть область только через ту часть ее границы, где . Но это невозможно, так как и при возрастании функция строго возрастает, пока , в силу (3).
Итак, доказано, что при и . Следовательно, по условию теоремы при . Интегрируя (3) от до , получаем
,
что противоречит ограниченности при . Противоречие доказывает теорему.
Пример. Рассмотрим уравнение , где — удовлетворяющая условию Липшица при функция такая, что при . Докажем неустойчивость решения .
Рассмотрим систему , соответствующую уравнению примера. В качестве функции Ляпунова возьмем . Имеем:
.
По теореме 4 решение системы неустойчиво, что и требовалось доказать.
3.3. Устойчивость по первому приближению.
Рассмотрим дифференциальное уравнение
, (8)
где — заданная квадратичная форма.
Лемма 1. Если собственные числа матрицы A удовлетворяют условию
, (9)
то уравнение (8) имеет единственное решение , являющееся квадратичной формой.
В следующих двух леммах будут построены квадратичные формы, являющиеся функциями Ляпунова для линейного уравнения
(10)
и удовлетворяющие условиям теорем 2 и 4.
Лемма 2. Пусть все собственные числа матрицы A имеют отрицательные вещественные части, — определенно-отрицательная квадратичная форма. Тогда уравнение (8) имеет единственное решение , являющееся определенно-положительной квадратичной формой.
Лемма 3. Пусть матрица A имеет собственные числа с положительными вещественными частями. Тогда можно подобрать такое, что существует единственное решение уравнения
,
причем если — определенно-положительная квадратичная форма, то область для квадратичной формы непуста.
Докажем теперь теоремы 5 и 6 пункта 2.6. Рассмотрим уравнение (1), у которого
(11)
где удовлетворяет условию
(12)
равномерно по .
Теорема 5 (см. теорему 5 п. 2.6). Если все собственные числа матрицы A имеют отрицательные вещественные части и удовлетворяет условию (12), то решение уравнения (1) асимптотически устойчиво.
Доказательство. Построим функцию Ляпунова, удовлетворяющую условию теоремы 2 для линейного уравнения (10), и покажем, что она удовлетворяет условиям теоремы 2 и для уравнения (1).
Пусть — квадратичная форма, удовлетворяющая уравнению
.
По лемме 2 определенно-положительная. Определим ее производную DV в силу уравнения (1). Из (2) и (11) имеем: . Отсюда получаем:
. (13)
Из (12) следует, что для любого можно указать такое, что при выполняется . Так как — квадратичная форма, то , , и . Очевидно также, что . Из (13) и записанных неравенств следует, что . Следовательно, DV — определенно-отрицательная функция при , если a выбрать по . Итак, выполнены все условия теоремы 2, откуда следует, что решение уравнения (1) асимптотически устойчиво. Теорема 5 доказана.
Теорема 6. (см. теорему 6 п. 2.6). Если среди собственных чисел матрицы имеются такие, вещественные части которых положительны, и выполнено условие (12), то решение уравнения (1) неустойчиво.
Доказательство. С помощью леммы 3 построим квадратичную форму , удовлетворяющую уравнению , и такую, что область для функции V непуста. Составим DV в силу уравнения (1). Имеем
.
Используя (12), как и при доказательстве теоремы 5, покажем, что если a достаточно мало, то при функция . Следовательно, так как в области , то при , имеем . Таким образом, выполнены все условия теоремы 4, откуда и следует, что нулевое решение уравнения (1) неустойчиво. Теорема доказана.
Список литературы
Метод функций Ляпунова в анализе динамики систем. Сб. статей. Новосибирск: Наука, 1987.
М. Розо. Нелинейные колебания и теория устойчивости. М.: Наука, 1971.
Б. П. Демидович. Лекции по математический теории устойчивости. М.: Наука, 1967.
И. Г. Петровский. Лекции по обыкновенным дифференциальным уравнениям. М.: Наука, 1964.
Ю. Н. Бибиков. Курс обыкновенных дифференциальных уравнений. М.: Высшая школа, 1991.
В. И. Арнольд. Обыкновенные дифференциальные уравнения. М.: Наука, 1975.
Кузнецов С. П. Динамический хаос (курс лекций). М.: Изд. ФМЛ, 2001.
Дата: 2019-05-28, просмотров: 230.