Устойчивость систем дифференциальных уравнений
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Устойчивость систем дифференциальных уравнений

Курсовая работа по дисциплине "Специальные разделы математики"

Выполнил студент Новичков А. А., группа: 450

Севмашвтуз - Филиал СПбГМТУ

Кафедра №2

Введение.

Решения большинства дифференциальных уравнений и их систем не выражаются через элементарные функции, и в этих случаях при решении конкретных уравнений применяются приближенные методы интегрирования. Вместе тем часто бывает необходимо знать не конкретные численные решения, а особенности решений: поведение отдельных решений при изменении параметров систем, взаимное поведение решений при различных начальных данных, является ли решение периодическим, как меняется общее поведение системы при изменении параметров. Все эти вопросы изучает качественная теория дифференциальных уравнений.

Одним из основных вопросов этой теории является вопрос об устойчивости решения, или движения системы, если ее трактовать как модель физической системы. Здесь важнейшим является выяснение взаимного поведения отдельных решений, незначительно отличающихся начальными условиями, то есть будут ли малые изменения начальных условий вызывать малые же изменения решений. Этот вопрос был подробно исследован А. М. Ляпуновым.

Основу теории Ляпунова составляет выяснение поведения решений при асимптотическом стремлении расстояния между решениями к нулю. В данной курсовой работе излагаются основы теории Ляпунова устойчивости непрерывных гладких решений систем дифференциальных уравнений первого порядка, а именно: в главе 1 излагаются основные определения, необходимые для изучения устойчивости; в главе 2 дается понятие устойчивости решений систем в общем виде и по первому приближению; в главе 3 излагаются основы второго метода Ляпунова.

Устойчивость решений систем дифференциальных уравнений.

Устойчивость по Ляпунову.

Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует траекторию с точки зрения поведения соседних траекторий, располагающихся в ее окрестности. Предположим, что система при старте из начальной точки  порождает траекторию . Рассмотрим другую траекторию той же системы , стартовая точка которой близка к . Если обе траектории остаются близкими в любой последующий момент времени, то траектория  называется устойчивой по Ляпунову.

Наглядная иллюстрация устойчивости по Лагранжу, Пуассону и Ляпунову приводится на рис. 2. Когда говорят просто об устойчивой траектории, то всегда имеется в виду устойчивость по Ляпунову.

Рис. 2. Качественная иллюстрация устойчивости по Лагранжу (траектория остается в замкнутой области), по Пуассону (траектория многократно возвращается в -окрестность стартовой точки) и по Ляпунову (две близкие на старте траектории остаются близкими всегда)

Рассмотрим уравнение (1)

где  и функция f удовлетворяет в G условию Липшица локально:

 и , где  — константа, не зависящая от выбора точек  и .

Предположим, что уравнение (1) имеет решение , определенное при , и что . Чтобы перейти к исследованию нулевого решения, выполним в (1) замену . В результате получим уравнение

,    (2)

где  определена в области, содержащей множество . Это уравнение называется уравнением в отклонениях. Пусть  — решение (2) с начальными данными .

Определение. Решение  уравнения (2) называется устойчивым по Ляпунову, если для , такое, что при .

Решение  называется асимптотически устойчивым, если оно устойчиво по Ляпунову и существует  такое, что  при .

Неустойчивость решения  означает следующее: существуют положительное , последовательность начальных точек  при , и последовательность моментов времени  такие, что .

При исследовании вопроса об устойчивости решений часто прибегают к заменам переменных, позволяющим упростить вид рассматриваемого уравнения. Сделаем в (2) замену , где функция  определена при всех  и непрерывна по z при  равномерно относительно , причем . Пусть уравнение  однозначно разрешимо относительно z: , где  определена на множестве  и непрерывна по y при  равномерно относительно . Пусть уравнение (2) заменой  можно преобразовать в уравнение .

Лемма. При сделанных предположениях нулевое решение уравнения (2) устойчиво по Ляпунову, асимптотически устойчиво или неустойчиво тогда и только тогда, когда соответственно устойчиво по Ляпунову, асимптотически устойчиво или неустойчиво нулевое решение уравнения .

Пусть уравнение (2) автономно, а его нулевое решение асимптотически устойчиво. Множество  называется областью притяжения решения .

Второй метод Ляпунова.

3.1. Основные определения.

Рассмотрим дифференциальное уравнение

, (1)

где . Предположим, что G — область единственности и  при всех , т. е. уравнение (1) имеет тривиальное решение . Рассмотрим вопрос об устойчивости этого решения.

Сущность второго метода Ляпунова заключается в исследовании поведения некоторой функции  как функции t при замене x на произвольное решение уравнения (1). В дальнейшем используем определения устойчивости и асимптотической устойчивости, где .

Под функцией Ляпунова будем понимать любую непрерывную функцию  такую, что  при всех . На множестве функций Ляпунова  задан линейный оператор D, определяемый формулой

.    (2)

 называется производной V в силу уравнения (1). Справедлива формула

, (3)

где  — решение уравнения (1) с начальными данными .

Определение. Функция Ляпунова , не зависящая от t, называется определенно-положительной, если в области G при . Функция Ляпунова  называется определенно-положительной, если существует определенно-положительная функция  такая, что . Функция Ляпунова  называется определенно-отрицательной, если  — определенно-положительная функция.

Определение. Функция Ляпунова  называется положительной, если  в области G и отрицательной, если  в G.

Таким образом, функцию Ляпунова, тождественно равную в G нулю, можно рассматривать и как положительную, и как отрицательную.

Отметим следующее свойство определенно-положительных и определенно-отрицательных функций: если , то . (4)

Импликация  в (4) вытекает непосредственно из определения функций Ляпунова. Чтобы обосновать импликацию , рассмотрим произвольную последовательность , , для которой  при . Покажем, что  при . Предположим, что это неверно. Тогда найдется подпоследовательность  и положительное число  такие, что . Согласно определению , где  — определенно-положительная функция. Положим . Множество  компактно, поэтому по теореме анализа , где , следовательно, . Тогда , что противоречит свойству последовательности .

Список литературы

Метод функций Ляпунова в анализе динамики систем. Сб. статей. Новосибирск: Наука, 1987.

М. Розо. Нелинейные колебания и теория устойчивости. М.: Наука, 1971.

Б. П. Демидович. Лекции по математический теории устойчивости. М.: Наука, 1967.

И. Г. Петровский. Лекции по обыкновенным дифференциальным уравнениям. М.: Наука, 1964.

Ю. Н. Бибиков. Курс обыкновенных дифференциальных уравнений. М.: Высшая школа, 1991.

В. И. Арнольд. Обыкновенные дифференциальные уравнения. М.: Наука, 1975.

Кузнецов С. П. Динамический хаос (курс лекций). М.: Изд. ФМЛ, 2001.

Устойчивость систем дифференциальных уравнений

Курсовая работа по дисциплине "Специальные разделы математики"

Выполнил студент Новичков А. А., группа: 450

Севмашвтуз - Филиал СПбГМТУ

Кафедра №2

Введение.

Решения большинства дифференциальных уравнений и их систем не выражаются через элементарные функции, и в этих случаях при решении конкретных уравнений применяются приближенные методы интегрирования. Вместе тем часто бывает необходимо знать не конкретные численные решения, а особенности решений: поведение отдельных решений при изменении параметров систем, взаимное поведение решений при различных начальных данных, является ли решение периодическим, как меняется общее поведение системы при изменении параметров. Все эти вопросы изучает качественная теория дифференциальных уравнений.

Одним из основных вопросов этой теории является вопрос об устойчивости решения, или движения системы, если ее трактовать как модель физической системы. Здесь важнейшим является выяснение взаимного поведения отдельных решений, незначительно отличающихся начальными условиями, то есть будут ли малые изменения начальных условий вызывать малые же изменения решений. Этот вопрос был подробно исследован А. М. Ляпуновым.

Основу теории Ляпунова составляет выяснение поведения решений при асимптотическом стремлении расстояния между решениями к нулю. В данной курсовой работе излагаются основы теории Ляпунова устойчивости непрерывных гладких решений систем дифференциальных уравнений первого порядка, а именно: в главе 1 излагаются основные определения, необходимые для изучения устойчивости; в главе 2 дается понятие устойчивости решений систем в общем виде и по первому приближению; в главе 3 излагаются основы второго метода Ляпунова.

Дата: 2019-05-28, просмотров: 267.