Рассмотрим многоканальную СМО с ожиданием и неограниченной длиной очереди, на которую поступает поток заявок с интенсивностью
и которая имеет интенсивность обслуживания каждого канала
. Размеченный граф состояний представлен на рис 3.7 Он имеет бесконечное число состояний:
S
- все каналы свободны, k=0;
S
- занят один канал, остальные свободны, k=1;
S
- заняты два канала, остальные свободны, k=2; 
S
- заняты все n каналов, k=n, очереди нет;
S
- заняты все n каналов, одна заявка в очереди, k=n+1,
S
- заняты все n каналов, r заявок в очереди, k=n+r,
Вероятности состояний получим из формул для многоканальной СМО с ограниченной очередью при переходе к пределу при m
. Следует заметить, что сумма геометрической прогрессии в выражении для p
расходится при уровне загрузки p/n>1, очередь будет бесконечно возрастать, а при p/n<1 ряд сходится, что определяет установившийся стационарный режим работы СМО.
Очереди нет

|
|
|
|
|
| … |
|
|
| … |
|
|
Рис.3.7 Размеченный граф состояний многоканальной СМО
с неограниченной очередью
для которого и определим выражения для предельных вероятностей состояний:

…; 

Поскольку отказа в обслуживании в таких системах не может быть, то характеристики пропускной способности равны:

среднее число заявок в очереди –

среднее время ожидания в очереди –

среднее число заявок в СМО –

Вероятность того, что СМО находится в состоянии
, когда нет заявок и не занято ни одного канала, определяется выражением

Эта вероятность определяет среднюю долю времени простоя канала обслуживания. Вероятность занятости обслуживанием k заявок –

На этом основании можно определить вероятность, или долю времени занятости всех каналов обслуживанием

Если же все каналы уже заняты обслуживанием, то вероятность состояния определяется выражением

Вероятность оказаться в очереди равна вероятности застать все каналы уже занятыми обслуживанием

Среднее число заявок, находящихся в очереди и ожидающих обслуживания, равно:

Среднее время ожидания заявки в очереди по формуле Литтла:
и в системе
среднее число занятых каналов обслуживанием:
;
среднее число свободных каналов:
;
коэффициент занятости каналов обслуживанием:

Важно заметить, что параметр характеризует степень согласования входного потока, например покупателей в магазине с интенсивностью потока обслуживания. Процесс обслуживания будет стабилен при
Если же
в системе будут возрастать средняя длина очереди и среднее время ожидания покупателями начала обслуживания и, следовательно, СМО будет работать неустойчиво.
Дата: 2019-05-28, просмотров: 277.