Рассмотрим многоканальную СМО , на вход которой поступает пуассоновский поток заявок с интенсивностью , а интенсивность обслуживания каждого канала составляет , максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.
- все каналы свободны, ;
- занят только один канал (любой), ;
- заняты только два канала (любых), ;
- заняты все каналов, .
Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:
- заняты все каналов и одна заявка стоит в очереди,
;
- заняты все каналов и две заявки стоят в очереди,
;
- заняты все каналов и все мест в очереди,
.
Граф состояний n-канальной СМО с очередью, ограниченной m местами на рис.3.6
Рис. 3.6 Граф состояний n-канальной СМО с ограничением на длину очереди m
Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью , тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния , когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного .
Запишем выражения для предельных вероятностей состояний:
.
Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем :
Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований. Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей Поэтому вероятность образования очереди равна:
Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:
Относительная пропускная способность будет равна:
Абсолютная пропускная способность –
Среднее число занятых каналов –
Среднее число простаивающих каналов –
Коэффициент занятости (использования) каналов –
Коэффициент простоя каналов –
Среднее число заявок, находящихся в очередях –
В случае если , эта формула принимает другой вид –
Среднее время ожидания в очереди определяется формулами Литтла –
Среднее время пребывания заявки в СМО, как и для одноканальной СМО, больше среднего времени ожидания в очереди на среднее время обслуживания, равное , поскольку заявка всегда обслуживается только одним каналом:
Дата: 2019-05-28, просмотров: 238.