Семейство методов Ньютона-Котеса
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Методы Ньютона-Котеса

Метод прямоугольников

Одним из простейших методов численного интегрирования является метод прямоугольников. На частичном отрезке подынтегральную функцию заменяют полиномом Лагранжа нулевого порядка, построенным в одной точке. В качестве этой точки можно выбрать середину частичного отрезка . Тогда значение интеграла на частичном отрезке:

(2.6)

Подставив это выражение в (2.4), получим составную формулу средних прямоугольников:

(2.7)

Графическая иллюстрация метода средних прямоугольников представлена на рис.2.2(a). Из рисунка видно, что площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из N прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы N элементарных прямоугольников.

Формулу (2.7) можно представить в ином виде:

или (2.8)

Эти формулы называются формулой левых и правых прямоугольников соответственно. Графически метод левых и правых прямоугольников представлен на рис.2.2(б, в). Однако из-за нарушения симметрии в формулах правых и левых прямоугольников, их погрешность значительно больше, чем в методе средних прямоугольников.

а) средние прямоугольники б) левые прямоугольники в) правые прямоугольники

Рис.2.2. Интегрирование методом прямоугольников

Метод трапеций

Если на частичном отрезке подынтегральную функцию заменить полиномом Лагранжа первой степени:

(2.9)

то искомый интеграл на частичном отрезке запишется следующим образом:

(2.10)

Тогда составная формула трапеций на всем отрезке интегрирования примет вид:

(2.11)

Графически метод трапеций представлен на рис.2.3. Площадь криволинейной трапеции заменяется площадью многоугольника, составленного из Nтрапеций, при этом кривая заменяется вписанной в нее ломаной. На каждом из частичных отрезков функция аппроксимируется прямой, проходящей через конечные значения, при этом площадь трапеции на каждом отрезке определяется по формуле 2.10.

Погрешность метода трапеций выше, чем у метода средних прямоугольников. Однако на практике найти среднее значение на элементарном интервале можно только у функций, заданных аналитически (а не таблично), поэтому использовать метод средних прямоугольников удается далеко не всегда.


Рис.2.3. Интегрирование методом методом трапеций

Метод Симпсона

В этом методе подынтегральная функция на частичном отрезке аппроксимируется параболой, проходящей через три точки , , , то есть интерполяционным многочленом Лагранжа второй степени:

(2.12)

Проведя интегрирование, получим:

(2.13)

Это и есть формула Симпсона или формула парабол. На отрезке формула Симпсона примет вид:

(2.14)

Если разбить отрезок интегрирования на четное количество 2N равных частей с шагом , то можно построить параболу на каждом сдвоенном частичном отрезке и переписать выражения (2.12-2.14) без дробных индексов. Тогда формула Симпсона примет вид:

(2.15)

Графическое представление метода Симпсона показано на рис.2.4. На каждом из сдвоенных частичных отрезков заменяем дугу данной кривой параболой.


Рис.2.4. Метод Симпсона

Методы Ньютона-Котеса

Метод прямоугольников

Одним из простейших методов численного интегрирования является метод прямоугольников. На частичном отрезке подынтегральную функцию заменяют полиномом Лагранжа нулевого порядка, построенным в одной точке. В качестве этой точки можно выбрать середину частичного отрезка . Тогда значение интеграла на частичном отрезке:

(2.6)

Подставив это выражение в (2.4), получим составную формулу средних прямоугольников:

(2.7)

Графическая иллюстрация метода средних прямоугольников представлена на рис.2.2(a). Из рисунка видно, что площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из N прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы N элементарных прямоугольников.

Формулу (2.7) можно представить в ином виде:

или (2.8)

Эти формулы называются формулой левых и правых прямоугольников соответственно. Графически метод левых и правых прямоугольников представлен на рис.2.2(б, в). Однако из-за нарушения симметрии в формулах правых и левых прямоугольников, их погрешность значительно больше, чем в методе средних прямоугольников.

а) средние прямоугольники б) левые прямоугольники в) правые прямоугольники

Рис.2.2. Интегрирование методом прямоугольников

Метод трапеций

Если на частичном отрезке подынтегральную функцию заменить полиномом Лагранжа первой степени:

(2.9)

то искомый интеграл на частичном отрезке запишется следующим образом:

(2.10)

Тогда составная формула трапеций на всем отрезке интегрирования примет вид:

(2.11)

Графически метод трапеций представлен на рис.2.3. Площадь криволинейной трапеции заменяется площадью многоугольника, составленного из Nтрапеций, при этом кривая заменяется вписанной в нее ломаной. На каждом из частичных отрезков функция аппроксимируется прямой, проходящей через конечные значения, при этом площадь трапеции на каждом отрезке определяется по формуле 2.10.

Погрешность метода трапеций выше, чем у метода средних прямоугольников. Однако на практике найти среднее значение на элементарном интервале можно только у функций, заданных аналитически (а не таблично), поэтому использовать метод средних прямоугольников удается далеко не всегда.


Рис.2.3. Интегрирование методом методом трапеций

Метод Симпсона

В этом методе подынтегральная функция на частичном отрезке аппроксимируется параболой, проходящей через три точки , , , то есть интерполяционным многочленом Лагранжа второй степени:

(2.12)

Проведя интегрирование, получим:

(2.13)

Это и есть формула Симпсона или формула парабол. На отрезке формула Симпсона примет вид:

(2.14)

Если разбить отрезок интегрирования на четное количество 2N равных частей с шагом , то можно построить параболу на каждом сдвоенном частичном отрезке и переписать выражения (2.12-2.14) без дробных индексов. Тогда формула Симпсона примет вид:

(2.15)

Графическое представление метода Симпсона показано на рис.2.4. На каждом из сдвоенных частичных отрезков заменяем дугу данной кривой параболой.


Рис.2.4. Метод Симпсона

Метод Зейделя

Метод Зейделя (иногда называемый методом Гаусса-Зейделя) является модификацией метода простой итерации, заключающейся в том, что при вычислении очередного приближения x(k+1) (см. формулы (1.13),(1.14)) его уже полученные компоненты x1(k+1), ...,xi - 1(k+1) сразу же используются для вычисления xi(k+1).

В координатной форме записи метод Зейделя имеет вид:


x1(k+1) = c11x1(k) + c12x2(k) + ... + c1n-1xn-1(k) + c1nxn(k) + d1
x2(k+1) = c21x1(k+1) + c22x2(k) + ... + c2n-1xn-1(k) + c2nxn(k) + d2
...
xn(k+1) = cn1x1(k+1) + cn2x2(k+1) + ... + cnn-1xn-1(k+1) + cnnxn(k) + dn

где x(0) - некоторое начальное приближение к решению.

Таким образом i-тая компонента (k+1)-го приближения вычисляется по формуле

xi(k+1) = ∑ j=1i-1 cijxj(k+1) + ∑ nj=i cijxj(k) + di , i = 1, ..., n (1.20)

Условие окончания итерационного процесса Зейделя при достижении точности ε в упрощенной форме имеет вид:

|| x (k+1) - x (k) || ≤ ε.

Существует более точное условие окончания итерационного процесса, которое более сложно и требует дополнительных вычислений (см., например, [1, стр.327]).

 

3. Метод хорд

Пусть f(a)f(b)<0. Сущность метода (его еще называют методом ложного положения) состоит в замене кривой y=f(x) хордами, проходящими через концы отрезков, в которых f(x) имеет противоположные знаки. Метод хорд требует, чтобы один конец отрезка, на котором ищется корень, был неподвижен. В качестве неподвижного конца х0 выбирают тот конец отрезка, для которого знак f(x) совпадает со знаком второй производной . Расчетная формула имеет вид

Метод хорд является двухточечным, его сходимость монотонная и односторонняя.

4. Метод Логранджа

Многочлен Лагранжа

При глобальной интерполяции на всем интервале строится единый многочлен. Одной из форм записи интерполяционного многочлена для глобальной интерполяции является многочлен Лагранжа:

(3.11)

где – базисные многочлены степени n:

(3.12)

То есть многочлен Лагранжа можно записать в виде:

(3.13)

Многочлен удовлетворяет условию . Это условие означает, что многочлен равен нулю при каждом кроме , то есть – корни этого многочлена. Таким образом, степень многочлена равна n и при обращаются в ноль все слагаемые суммы, кроме слагаемого с номером , равного .

Выражение (3.11) применимо как для равноотстоящих, так и для не равноотстоящих узлов. Погрешность интерполяции методом Лагранжа зависит от свойств функции , от расположения узлов интерполяции и точки x. Полином Лагранжа имеет малую погрешность при небольших значениях n (n<20). При больших n погрешность начинает расти, что свидетельствует о том, что метод Лагранжа не сходится (то есть его погрешность не убывает с ростом n).

Многочлен Лагранжа в явном виде содержит значения функций в узлах интерполяции, поэтому он удобен, когда значения функций меняются, а узлы интерполяции неизменны. Число арифметических операции, необходимых для построения многочлена Лагранжа, пропорционально и является наименьшим для всех форм записи. К недостаткам этой формы записи можно отнести то, что с изменением числа узлов приходится все вычисления проводить заново.

Кусочно-линейная и кусочно-квадратичная локальные интерполяции являются частными случаями интерполяции многочленом Лагранжа.








Многочлен Ньютона

Другая форма записи интерполяционного многочлена – интерполяционный многочлен Ньютона с разделенными разностями. Пусть функция задана с произвольным шагом, и точки таблицы значений пронумерованы в произвольном порядке.

Разделенные разности нулевого порядка совпадают со значениями функции в узлах. Разделенные разности первого порядка определяются через разделенные разности нулевого порядка:

(3.14)

Разделенные разности второго порядка определяются через разделенные разности первого порядка:

(3.15)

Разделенные разности k-го порядка определяются через разделенные разности порядка :

(3.16)

Используя понятие разделенной разности интерполяционный многочлен Ньютона можно записать в следующем виде:

(3.17)

За точностью расчета можно следить по убыванию членов суммы (3.17). Если функция достаточно гладкая, то справедливо приближенное равенство . Это приближенное равенство можно использовать для практической оценки погрешности интерполяции: .

 

4. Метод Эйлера

Рассмотрим дифференциальное уравнение

(1)

с начальным условием


Подставив в уравнение (1), получим значение производной в точке :


При малом имеет место:


Обозначив , перепишем последнее равенство в виде:

(2)

Принимая теперь за новую исходную точку, точно также получим:


В общем случае будем иметь:

(3)

Это и есть метод Эйлера. Величина называется шагом интегрирования. Пользуясь этим методом, мы получаем приближенные значения у , так как производная на самом деле не остается постоянной на промежутке длиной . Поэтому мы получаем ошибку в определении значения функции у , тем большую, чем больше . Метод Эйлера является простейшим методом численного интегрирования дифференциальных уравнений и систем. Его недостатки – малая точность и систематическое накопление ошибок.

Более точным является модифицированный метод Эйлера с пересчетом. Его суть в том, что сначала по формуле (3) находят так называемое «грубое приближение» (прогноз):


а затем пересчетом получают тоже приближенное, но более точное значение (коррекция):

(4)


Фактически пересчет позволяет учесть, хоть и приблизительно, изменение производной на шаге интегрирования , так как учитываются ее значения в начале и в конце шага (рис. 1), а затем берется их среднее. Метод Эйлера с пересчетом (4) является по существу методом Рунге-Кутта 2-го порядка [2], что станет очевидным из дальнейшего.


Рис. 1. Геометрическое представление метода Эйлера с пересчетом.







Метод простой итерации

Метод прямоугольников

Метод хорд

Пусть на отрезке [ a , b ] функция f ( x ) непрерывна, принимает на концах отрезка значение разных знаков, а производная f ’( x ) сохраняет знак. В зависимости от знака второй производной возможны следующие случаи расположения кривых (рис. 2.7., 2.8):

1.f ( a )<0, f ( b )>0, f ‘( x )>0 – функция возрастает:

 

а) f ’’( x )>0 (кривая вогнута вниз) б) f ’’( x )<0 (кривая вогнута вверх)

Рис. 2.7

 

2.f ( a )>0, f ( b )<0, f ‘( x )<0 – функция убывает:

 

а) f ’’( x )>0 (кривая вогнута вниз) б) f ’’( x )<0 (кривая вогнута вверх)

Рис. 2.8

 

Рассмотрим случай, когда f ’( x ) и f ’’( x ) имеют одинаковые знаки (рис. 2.9.).

 

3. f ( a )<0, f ( b )>0, f ‘( x )>0 – функция возрастает

а) f ’’( x )>0 (кривая вогнута вниз) б) f ’’( x )<0 (кривая вогнута вверх)

 

 

f(a)<0, f(b)>0

f ‘(x)>0, f ’’(x)>0

Рис. 2.9

 

График функции проходит через точки A 0 ( a , f ( a )) и B ( b , f ( b )). Искомый корень уравнения (точка ξ) нам известен, вместо него возьмем точку x 1 пересечения хорды A 0 B с осью абсцисс это и будет приближенное значение корня.

Уравнение хорды A 0 B:

Найдем значение x = x 1, для которого y = 0 :

Теперь корень находится на отрезке [ x 1 , b ]. Применим метод хорд к этому отрезку. Проведем хорду, соединяющую точки A 1 ( x 1 , f ( x 1 )) и B и найдем точку x 2 – точку пересечения хорды A 1 B с осью ox

Продолжая этот процесс, находим:

и т.д.

 

(2.2)

       

 

В этом случае конец b отрезка [ a , b ] остается неподвижным, а конец a перемещается.

Формула (2.2) носит название формулы метода хорд. Вычисление по формуле (2.2) продолжаем до тех пор, пока не достигнем заданной точности, т.е. должно выполняться условие:

где - заданная погрешность.

Теперь рассмотрим случай, когда первая и вторая производные имеют разные знаки, т.е. f ‘( x ) f ’’( x )<0 (рис. 2.10).

 

Рис. 2.10

 

Соединим точки A ( a , f ( a )) и B 0 ( b , f ( b )) хордой AB 0. Точку пересечения хорды AB 0 с осью ox будем считать первым приближением корня. В этом случае, очевидно, неподвижным концом отрезка будет являться конец a.

Запишем уравнение хорды AB 0:

Отсюда найдем x 1, полагая y = 0:

Теперь корень следующий:

Применяя метод хорд к отрезку, получим

(2.3)

 

Условие окончания вычислений:

 

Итак, если f ‘( x ) f ’’( x )>0 приближенное значение корня находят по формуле (2.2), если f ‘( x ) · f ’’( x )<0, то по формуле (2.3).

Практически выбор той или иной формулы осуществляют, пользуясь следующим правилом: неподвижным концом отрезка является тот, для которого знак функции совпадает со знаком второй производной.

21.)

Отыскание параметров эмпирических формул . методом наименьших квадратов

 

При эмпирическом (экспериментальном) изучении функциональной зависимости одной величины У от другой Х производят ряд измерений величины У при различных значениях величины Х. Полученные результаты можно представить в виде таблицы, графика:
X X1 X2 Xn
Y Y1 Y2 Yn

Метод хорд

Пусть на отрезке [ a , b ] функция f ( x ) непрерывна, принимает на концах отрезка значение разных знаков, а производная f ’( x ) сохраняет знак. В зависимости от знака второй производной возможны следующие случаи расположения кривых (рис. 2.7., 2.8):

1.f ( a )<0, f ( b )>0, f ‘( x )>0 – функция возрастает:

 

а) f ’’( x )>0 (кривая вогнута вниз) б) f ’’( x )<0 (кривая вогнута вверх)

Рис. 2.7

 

2.f ( a )>0, f ( b )<0, f ‘( x )<0 – функция убывает:

 

а) f ’’( x )>0 (кривая вогнута вниз) б) f ’’( x )<0 (кривая вогнута вверх)

Рис. 2.8

 

Рассмотрим случай, когда f ’( x ) и f ’’( x ) имеют одинаковые знаки (рис. 2.9.).

 

3. f ( a )<0, f ( b )>0, f ‘( x )>0 – функция возрастает

а) f ’’( x )>0 (кривая вогнута вниз) б) f ’’( x )<0 (кривая вогнута вверх)

 

 

f(a)<0, f(b)>0

f ‘(x)>0, f ’’(x)>0

Рис. 2.9

 

График функции проходит через точки A 0 ( a , f ( a )) и B ( b , f ( b )). Искомый корень уравнения (точка ξ) нам известен, вместо него возьмем точку x 1 пересечения хорды A 0 B с осью абсцисс это и будет приближенное значение корня.

Уравнение хорды A 0 B:

Найдем значение x = x 1, для которого y = 0 :

Теперь корень находится на отрезке [ x 1 , b ]. Применим метод хорд к этому отрезку. Проведем хорду, соединяющую точки A 1 ( x 1 , f ( x 1 )) и B и найдем точку x 2 – точку пересечения хорды A 1 B с осью ox

Продолжая этот процесс, находим:

и т.д.

 

(2.2)

       

 

В этом случае конец b отрезка [ a , b ] остается неподвижным, а конец a перемещается.

Формула (2.2) носит название формулы метода хорд. Вычисление по формуле (2.2) продолжаем до тех пор, пока не достигнем заданной точности, т.е. должно выполняться условие:

где - заданная погрешность.

Теперь рассмотрим случай, когда первая и вторая производные имеют разные знаки, т.е. f ‘( x ) f ’’( x )<0 (рис. 2.10).

 

Рис. 2.10

 

Соединим точки A ( a , f ( a )) и B 0 ( b , f ( b )) хордой AB 0. Точку пересечения хорды AB 0 с осью ox будем считать первым приближением корня. В этом случае, очевидно, неподвижным концом отрезка будет являться конец a.

Запишем уравнение хорды AB 0:

Отсюда найдем x 1, полагая y = 0:

Теперь корень следующий:

Применяя метод хорд к отрезку, получим

(2.3)

 

Условие окончания вычислений:

 

Итак, если f ‘( x ) f ’’( x )>0 приближенное значение корня находят по формуле (2.2), если f ‘( x ) · f ’’( x )<0, то по формуле (2.3).

Практически выбор той или иной формулы осуществляют, пользуясь следующим правилом: неподвижным концом отрезка является тот, для которого знак функции совпадает со знаком второй производной.

 

Оценка погрешности интерполяционной формулы Лагранжа

Имеем yj = f ( xj ), Ln(x). Многочлен Ln(x) построен так, что Ln( xj ) = f ( xj ). Вычисляя погрешность Rn(x) таким образом: Rn(x) = f (x) - Ln(x), можно получить следующую формулу для оценки погрешности интерполяционной формулы Лагранжа: . Такая оценка возможна только в том случае, когда известно аналитическое выражение для f. Если же f задана таблично, то производные заменяются конечными разностями.

Интерполяционные формулы Ньютона

  • Первая интерполяционная формула Ньютона Пусть yi = f ( xi ), xi = x0 + ih, i = 1, 2, :, n. Нужно построить Pn(x), удовлетворяющий двум условиям:

1. Степень полинома не должна превышать n.

2. Pn( xi ) = yi.

Формула Pn(x) для первой интерполяционной формулы Ньютона имеет вид: , где q = ( x - x0 ) / h. Первая интерполяционная формула Ньютона применяется тогда, когда x находится вначале таблицы. Тогда в качестве x0 следует брать ближайшее слева к заданному xтабличное значение.

  • Вторая интерполяционная формула Ньютона Когда значение аргумента находится ближе к концу отрезка интерполяции, применять первую интерполяционную формулу становится невыгодно. Для этого применяется вторая интерполяционная формула Ньютона: , где q = ( x - xn ) / h. Здесь в качестве xn следует брать ближайшее справа к заданному x табличное значение.

Оценка погрешностей первой и второй интерполяционных формул Ньютона

Используя подстановки q = ( x - x0 ) / h и q = ( x - xn ) / h и заменяя соответствующим образом выражение для Пn+1(x) в формуле оценки погрешности интерполяционной формулы Лагранжа, получим формулы для оценки погрешности интерполирования по первой и второй интерполяционной формуле Ньютона соответственно: , .

 

 

 

 

Метод Эйлера. Усовершенствованный метод Эйлера.
Классический метод Рунге-Кутты

 

Не обошла стороной вычислительная математика и дифференциальные уравнения! Сегодня на уроке мы познакомимся с основами приближённых вычислений в этом разделе математического анализа, после чего перед вами приветливо распахнутся толстые-претолстые книги по теме. Ибо вычислительная математика стороной диффуры ещё как не обошла =)

Перечисленные в заголовке методы предназначены для приближённого нахождения решений дифференциальных уравнений, систем ДУ, и краткая постановка наиболее распространённой задачи такова:

Рассмотрим дифференциальное уравнение первого порядка , для которого требуется найти частное решение, соответствующее начальному условию . Что это значит? Это значит, нам нужно найти функцию (предполагается её существование), которая удовлетворяет данному дифф. уравнению, и график которой проходит через точку .

Но вот незадача – переменные в уравнении разделить невозможно. Никакими известными науке способами. А если и возможно, то получается неберущийся интеграл. Однако частное-то решение существует! И здесь на помощь приходят методы приближенных вычислений, которые позволяют с высокой (а зачастую с высочайшей) точностью «сымитировать» функцию на некотором промежутке.

Идея методов Эйлера и Рунге-Кутты состоит в том, чтобы заменить фрагмент графика ломаной линией, и сейчас мы узнаем, как эта идея реализуется на практике. И не только узнаем, но и непосредственно реализуем =) Начнём с исторически первого и самого простого метода. …Вы хотите иметь дело со сложным дифференциальным уравнением? Вот и я тоже не хочу:)

Задание

Найти частное решение дифференциального уравнения , соответствующее начальному условию , методом Эйлера на отрезке с шагом . Построить таблицу и график приближённого решения.

Разбираемся. Во-первых, перед нами обычное линейное уравнение, которое можно решить стандартными способами, и поэтому очень трудно устоять перед соблазном сразу же найти точное решение:

– желающие могут выполнить проверку и убедиться, что данная функция удовлетворяет начальному условию и является корнем уравнения .

Что нужно сделать? Нужно найти и построить ломаную, которая приближает график функции на промежутке . Поскольку длина этого промежутка равна единице, а шаг составляет , то наша ломаная будет состоять из 10 отрезков:

причём, точка уже известна – она соответствует начальному условию . Кроме того, очевидны «иксовые» координаты других точек:

Осталось найти . Никакого дифференцирования и интегрирования – только сложение и умножение! Каждое следующее «игрековое» значение получается из предыдущего по простой рекуррентной формуле:

Представим дифференциальное уравнение в виде :

Таким образом:

«Раскручиваемся» от начального условия :

Понеслось:


и так далее – до победного конца.

Результаты вычислений удобно заносить в таблицу:

А сами вычисления автоматизировать в Экселе – потому что в математике важен не только победный, но ещё и быстрый конец:)

 






Методы Ньютона-Котеса

Метод прямоугольников

Одним из простейших методов численного интегрирования является метод прямоугольников. На частичном отрезке подынтегральную функцию заменяют полиномом Лагранжа нулевого порядка, построенным в одной точке. В качестве этой точки можно выбрать середину частичного отрезка . Тогда значение интеграла на частичном отрезке:

(2.6)

Подставив это выражение в (2.4), получим составную формулу средних прямоугольников:

(2.7)

Графическая иллюстрация метода средних прямоугольников представлена на рис.2.2(a). Из рисунка видно, что площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из N прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы N элементарных прямоугольников.

Формулу (2.7) можно представить в ином виде:

или (2.8)

Эти формулы называются формулой левых и правых прямоугольников соответственно. Графически метод левых и правых прямоугольников представлен на рис.2.2(б, в). Однако из-за нарушения симметрии в формулах правых и левых прямоугольников, их погрешность значительно больше, чем в методе средних прямоугольников.

а) средние прямоугольники б) левые прямоугольники в) правые прямоугольники

Рис.2.2. Интегрирование методом прямоугольников

Метод трапеций

Если на частичном отрезке подынтегральную функцию заменить полиномом Лагранжа первой степени:

(2.9)

то искомый интеграл на частичном отрезке запишется следующим образом:

(2.10)

Тогда составная формула трапеций на всем отрезке интегрирования примет вид:

(2.11)

Графически метод трапеций представлен на рис.2.3. Площадь криволинейной трапеции заменяется площадью многоугольника, составленного из Nтрапеций, при этом кривая заменяется вписанной в нее ломаной. На каждом из частичных отрезков функция аппроксимируется прямой, проходящей через конечные значения, при этом площадь трапеции на каждом отрезке определяется по формуле 2.10.

Погрешность метода трапеций выше, чем у метода средних прямоугольников. Однако на практике найти среднее значение на элементарном интервале можно только у функций, заданных аналитически (а не таблично), поэтому использовать метод средних прямоугольников удается далеко не всегда.


Рис.2.3. Интегрирование методом методом трапеций

Метод Симпсона

В этом методе подынтегральная функция на частичном отрезке аппроксимируется параболой, проходящей через три точки , , , то есть интерполяционным многочленом Лагранжа второй степени:

(2.12)

Проведя интегрирование, получим:

(2.13)

Это и есть формула Симпсона или формула парабол. На отрезке формула Симпсона примет вид:

(2.14)

Если разбить отрезок интегрирования на четное количество 2N равных частей с шагом , то можно построить параболу на каждом сдвоенном частичном отрезке и переписать выражения (2.12-2.14) без дробных индексов. Тогда формула Симпсона примет вид:

(2.15)

Графическое представление метода Симпсона показано на рис.2.4. На каждом из сдвоенных частичных отрезков заменяем дугу данной кривой параболой.


Рис.2.4. Метод Симпсона

Семейство методов Ньютона-Котеса

Выше были рассмотрены три схожих метода интегрирования функций – метод прямоугольников, метод трапеций, метод Симпсона. Их объединяет общая идея: интегрируемая функция интерполируется на отрезке интегрирования по равноотстоящим узлам многочленом Лагранжа, для которого аналитически вычисляется значение интеграла. Семейство методов, основанных на таком подходе, называется методами Ньютона-Котеса.

В выражении коэффициенты правильнее называть весовыми коэффициентами. Величину , определяющую погрешность численного интегрирования, называют остатком.

Для семейства методов Ньютона-Котеса можно записать общее выражение:

(2.16)

где n – порядок метода Ньютона-Котеса, N – количество частичных отрезков, , , .

Из выражения (2.16) легко можно получить формулу прямоугольников для , формулу трапеций для , и формулу Симпсона для . Коэффициенты могут быть заданы в табличной форме (таблица.2.1).

n
0 1 1          
1 2 1 1        
2 6 1 4 1      
3 8 1 3 3 1    
4 90 7 32 12 32 7  
5 288 19 75 50 50 75 19

Таблица 2.1. Весовые коэффициенты метода Ньютона-Котеса

 

Методы Ньютона-Котеса

Метод прямоугольников

Одним из простейших методов численного интегрирования является метод прямоугольников. На частичном отрезке подынтегральную функцию заменяют полиномом Лагранжа нулевого порядка, построенным в одной точке. В качестве этой точки можно выбрать середину частичного отрезка . Тогда значение интеграла на частичном отрезке:

(2.6)

Подставив это выражение в (2.4), получим составную формулу средних прямоугольников:

(2.7)

Графическая иллюстрация метода средних прямоугольников представлена на рис.2.2(a). Из рисунка видно, что площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из N прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы N элементарных прямоугольников.

Формулу (2.7) можно представить в ином виде:

или (2.8)

Эти формулы называются формулой левых и правых прямоугольников соответственно. Графически метод левых и правых прямоугольников представлен на рис.2.2(б, в). Однако из-за нарушения симметрии в формулах правых и левых прямоугольников, их погрешность значительно больше, чем в методе средних прямоугольников.

а) средние прямоугольники б) левые прямоугольники в) правые прямоугольники

Рис.2.2. Интегрирование методом прямоугольников

Метод трапеций

Если на частичном отрезке подынтегральную функцию заменить полиномом Лагранжа первой степени:

(2.9)

то искомый интеграл на частичном отрезке запишется следующим образом:

(2.10)

Тогда составная формула трапеций на всем отрезке интегрирования примет вид:

(2.11)

Графически метод трапеций представлен на рис.2.3. Площадь криволинейной трапеции заменяется площадью многоугольника, составленного из Nтрапеций, при этом кривая заменяется вписанной в нее ломаной. На каждом из частичных отрезков функция аппроксимируется прямой, проходящей через конечные значения, при этом площадь трапеции на каждом отрезке определяется по формуле 2.10.

Погрешность метода трапеций выше, чем у метода средних прямоугольников. Однако на практике найти среднее значение на элементарном интервале можно только у функций, заданных аналитически (а не таблично), поэтому использовать метод средних прямоугольников удается далеко не всегда.


Рис.2.3. Интегрирование методом методом трапеций

Метод Симпсона

В этом методе подынтегральная функция на частичном отрезке аппроксимируется параболой, проходящей через три точки , , , то есть интерполяционным многочленом Лагранжа второй степени:

(2.12)

Проведя интегрирование, получим:

(2.13)

Это и есть формула Симпсона или формула парабол. На отрезке формула Симпсона примет вид:

(2.14)

Если разбить отрезок интегрирования на четное количество 2N равных частей с шагом , то можно построить параболу на каждом сдвоенном частичном отрезке и переписать выражения (2.12-2.14) без дробных индексов. Тогда формула Симпсона примет вид:

(2.15)

Графическое представление метода Симпсона показано на рис.2.4. На каждом из сдвоенных частичных отрезков заменяем дугу данной кривой параболой.


Рис.2.4. Метод Симпсона

Дата: 2019-04-23, просмотров: 345.