Уровни абстрактного описания систем
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Наиболее применимыми в практике системного анализа являются следующие уровни абстрактного описания систем:

• символический, или лингвистический;

• теоретико-множественный;

• абстрактно-алгебраический;

• топологический;

• логико-математический;

• теоретико-информационный;

• динамический;

• эвристический.

Лингвистический уровень описания системы — наиболее общий уро­вень абстрагирования. На лингвистическом уровне описания, по М. Месаровичу, системой называется множество правильных высказыва­ний в некотором абстрактном языке, для которого определены граммати­ческие правила построения высказываний. Все высказывания делятся на два класса: термы (объекты исследования) и функторы (отношения между термами). Для определения абстрактного языка вводится совокупность не­которых символов, и задаются правила оперирования ими.

Теоретико-множественное определение системы: система есть соб­ственное подмножество XS X, гдеX— прямое (декартово) произведение множеств Xi, i = :

X = X1 X2 X3 Xn                                                  (1.1)

Декартовым произведением множеств называется множество конечных наборов элементов (x1, x2, x3,…,xn), таких, что

x1 X1, x2 X2, … , xn Xn.

Каждый элемент xi Хi, в свою очередь, может быть множеством, которое позволяет описывать иерархию достаточно сложных систем.

Примером реальной системы, исследованной на уровне теоретико-множественнного подхода, является кибернетическая система управления предприятием, описанная Ст. Биром.

Абстрактно-алгебраическое определение понятия системы: системой S называется некоторое множество элементов {Si} S, i= , на ко­тором задано отношение R с фиксированными свойствами Р. Следователь­но, система определяется заданием S=S]xS2x...xSn и семейством отноше­ний R = {R], R2,...Rm }, например, бинарных, тернарных и т. д.

Важное значение в исследовании реальных систем имеет динамиче­ское определение сложной системы. С позиций динамического подхода определение системы сводится к заданию восьмерки величин:

S = {T,X, U, Ω, Y, Г, η, φ},                                                        (1.2)

где Т— множество моментов времени;

X— множество допустимых входных воздействий, X = {х: Т → Q};

Ω - множество мгновенных значений входных воздействий;

U— множество состояний или внутренних характеристик системы;

Y— множество мгновенных значений выходных сигналов;

Г- множество выходных величин, Г= {γ: Т → Y);

η - выходное отображение, η: T*U →Y ;

φ - переходная функция состояния, φ: T*T*U*X →U.

 

Приведенное определение динамической системы является чрезвы­чайно общим. Такое определение имеет концептуальное значение, позво­ляет выработать общую терминологию, но не обеспечивает получения со­держательных практических выводов, и поэтому требует дальнейшей кон­кретизации и введения дополнительных структур, что будет осуществлено ниже. Задачи, рассматриваемые в теории систем на основе приведенного определения, традиционны: это задачи устойчивости, управления, иденти­фикации, оптимизации, эквивалентности, структуры, декомпозиции, син­теза и ряд других.

Для целей экономической кибернетики понятие динамической сис­темы представляется особенно важным, поскольку экономические объекты относятся к классу динамических.

До сих пор предпосылкой описания сложной системы являлось представление о том, что взаимодействие системы с внешней средой осу­ществляется с помощью входов и выходов. Системы такого рода являются относительно обособленными. В реальной действительности абсолютно обособленных (замкнутых) систем не существует, хотя подобная абстрак­ция иногда используется в целях исследования.

Системный подход

Локальным решениям, полученным на основе охвата небольшого числа существенных факторов, кибернетика противопоставляет систем­ ный подход. Этот подход отличается от традиционного, предусматриваю­щего расчленение изучаемого объекта на составные элементы и определе­ние поведения сложного объекта как результата объединения свойств вхо­дящих в него систем.

Системный подход основывается на принципе целостности объекта исследования, т. е. исследование его свойств как единого целого, единой системы. Этот принцип исходит из того, что целое обладает такими качествами, которыми не обладает ни одна из его частей. Такое свойство целостной системы называют эмерджентностью (от англ. emergent — неожиданно возникающий). Выражением эмерджентных свойств является всякий эффект взаимодействия, не аддитивный по отношению к локальным эффектам.

Системный подход для максимального использования качества цело­стности требует непрерывной интеграции представлений о системе с раз­личных точек зрения, на каждом этапе ее исследования, а также — подчинения частных целей общей цели, стоящей перед всей системой.

Системный подход опирается на диалектический закон взаимосвязи и взаимообусловленности явлений в мире и обществе и требует рассмот­рения изучаемого явления или процесса не только как самостоятельной системы, но и как подсистемы некоторой суперсистемы более высокого уровня. Системный подход требует прослеживания как можно большего числа связей, не только внутренних, но и внешних — с тем, чтобы не упус­тить действительно существенные связи и факторы и оценить их эффекты. Практически системный подход — это системный охват, системные пред­ставления, системная организация исследования.

Любой объект исследования, таким образом, может быть представ­лен как подсистема некоторой системы более высокого ранга, - и это при­водит к проблеме выделения системы, установления ее границ, - и как система по отношению к некоторой совокупности подсистем более низко­го ранга, которые, в свою очередь, образованы некоторыми элементами, дальнейшее дробление которых нецелесообразно с точки зрения конкрет­ного исследования, - и это определяет необходимость постановки задачи выбора такого первичного элемента.

Выделение системы предполагает наличие ряда системообразующих признаков, которые определяются целями исследования и волей исследо­вателя и в силу этого являются субъективными:

• объекта исследования;

• субъекта исследования;

• цели исследования.

Не существует однозначного подхода к определению первичного элемента, выбор которого осуществляется субъективно, в соответствии с целями исследования.

Первичным элементом системы является элементарный объект, неделимый далее средствами данного метода декомпозиции в границах данного исследования, устойчивость которого выше, чем устойчивость системы в целом.

Концепция первичного элемента системы позволяет производить структурный анализ системы, причем элементы выступают модулями структуры, «черными ящиками», внутренняя структура которых не являет­ся предметом исследования. Взаимодействия элементов системы между собой и с внешней средой обеспечивается посредством системы связей, разнообразие которых так же велико, как и разнообразие свойств системы и среды. При этом в процессе анализа и синтеза систем исследуются лишь существенные связи, а прочими пренебрегают, либо интерпретируют их как возмущения или «шум».

 

Сложная система

При выделении системы, как правило, задается не одно, а множество отношений, или связей между элементами. Такая система характеризуется

неоднородностью элементов и связей, структурным разнообразием, что свидетельствует о сложности системы.

Понятие сложной системы неоднозначно. Это собирательное назва­ние систем, состоящих из большого числа взаимосвязанных элементов. Часто сложными называют системы, которые не поддаются корректному математическому описанию либо ввиду высокого уровня разнообразия, либо из-за непознанности природы явлений, протекающих в системе.

Английский кибернетик Ст. Бир подразделяет все кибернетические системы на три группы — простые, сложные и очень сложные. Примеры систем, относящиеся к этим трем группам, приведены в табл. 1.1.

Таблица 1.1 - Классификация систем по Ст. Биру

 

 

 

 

Системы Простые Сложные Очень сложные

Детерминирован­ные

Оконная задвижка Цифровая элек­тронная вычисли­тельная машина -
Проект механических мастерских Автоматизация -

Вероятностные

Подбрасывание мо­неты Хранение запасов Экономика
Движение медузы Условные рефлек­сы Мозг
Статистический кон­троль качества про­дукции Прибыль    про­мышленного предприятия Фирма

Характеристики «сложности» систем многообразны и сопровож­даются одновременно многими специфическими чертами, такими, как:

• многокомпонентность системы (большое число элементов, связей, большие объемы циркулирующей информации, др.);

• многообразие возможных форм связей элементов (разнородность структур — древовидных, иерархических, др.);

• многокритериальность, т. е. наличие ряда противоречивых критериев;

• многообразие природы элементов, составляющих систему;

• высокий динамизм поведения системы и структурных характеристик и др.

Весьма характерным для сложных систем является то обстоятельст­во, что, независимо от природы исследуемой системы, при решении задач управления используются одни и те же абстрактные модели, составляю­щие сущность системного подхода, позволяющие определить пути про­дуктивного исследования сложных систем любой природы и любого на­значения.

Первой и основной чертой сложных систем традиционно считается целостность, или единство системы, холизм, проявляющийся в наличии у всей системы общей цели, назначения. Еще до возникновения системотех­ники выдающиеся отечественные физиологи И. М. Сеченов и И. П. Павлов обогатили мировую науку идеями саморегуляции функций целостности живого организма. Полное значение и формулировка принципа органиче­ской целостности были осознаны лишь с появлением концепций общей теории систем и формированием методологии кибернетики. Поэтому сис­темы, в отдельных частях которых не наблюдается взаимодействия со всей системой в плане подчинения единой цели, не относятся к классу сложных систем, исследуемых в кибернетике.

Целостность характеризуется рядом свойств и особенностей, ее мно­гогранность выражается понятиями: дифференциация, интеграция, сим­метрия, полярность и др. Дифференциация отражает свойство расчленен­ности целого, проявление разнокачественности ее частей. Противополож­ное понятие — интеграция связано с объединением совокупности сопод­чиненных элементов в единое образование. Симметрия и асимметрия выражают степень соразмерности в пространственных и временных связях системы.

Любая кибернетическая система обладает всеми характерными при­знаками целостности. Универсальность симметрии, широко распростра­ненной в природе и представляющей собой всеобщий закон природы, была выражена в принципе симметрии Пьером Кюри. Из принципа симметрии и полярности следуют важные заключения о свойствах структуры и процес­сов исследуемых кибернетикой систем и моделей.

Системный подход, основанный на принципе целостности, в иссле­довании свойств объекта как единого целого, требует непрерывной инте­грации представлений о системе на каждом этапе исследования — систем­ного анализа, системного проектирования, системной оптимизации. Рас­сматриваемый подход проявляется в действии ряда общих принципов ис­следования:

· принцип максимума эффективности проектируемой и функционирующей системы;

· принцип субоптимизации — согласования локальных критериев между собой и с общим глобальным критерием функционирования системы;

· принцип декомпозиции, осуществляемый с учетом требования максимума эффективности. В результате декомпозиции может быть получена некоторая многоуровневая структура системы или процесса ее исследования.

Системный подход к исследованию объекта на определенном уровне абстракции позволяет решать вполне определенный, ограниченный круг задач, а для расширения (сужения) класса решаемых задач необходимо проводить исследование уже на другом уровне абстракции. Каждый из уровней представления системы располагает определенными возможно­стями и имеет свои ограничения. Системный подход сам системен. Для достижения максимальной полноты и глубины исследования необходимо исследовать систему на всех целесообразных для конкретного случая уровнях абстракции.

Использование системного подхода для целей исследования объекта носит дедуктивный характер. Выберем в качестве объекта исследования функциональную систему S.

Определение 1.1: если S является функцией:

S : X→Y,                                        (1.3)

где Х—входной,

Y— выходной объект,

то соответствующая система называется функциональной.

Такая система иначе называется системой «вход-выход».

В кибернетической литературе ее называют «черным ящиком». Этот термин предложил английский ученый-кибернетик У. Р. Эшби. В ка­честве «черного ящика» принимаются объекты исследования кибернетики, внутренняя структура (устройство) которых неизвестно или оно не являет­ся предметом изучения. Внешнему наблюдателю таких объектов доступны только воздействия на их входы и реакция на воздействия, проявляющаяся в изменении поведения объектов на выходе. Концепция «черного ящика» дает определенные возможности для объективного изучения систем, уст­ройство которых либо недоступно исследователю, либо их поведение не зависит от структурных характеристик.

Наблюдая достаточно долго за поведением такой системы, можно достичь такого уровня знаний свойств системы, чтобы научиться предска­зывать движение ее выходных координат при любом заданном изменении на входе. Очевидно, однако, что возможности исследования «черного ящи­ка» достаточно ограничены. Заметим попутно, что в рамках данного под­хода системы, характеризующиеся одинаковыми наборами входных и вы­ходных величин и одинаково реагирующие на внешние возмущения, яв­ляются по определению изоморфными. Концепция «черного ящика» пло­дотворна на стадии исследования эмерджентных свойств, поскольку имен­но «черный ящик» олицетворяет систему как нечто целое, чье поведение необъяснимо со структурных позиций. Предсказание поведения целого, основанное на иной платформе (так называемый «белый ящик», «серый ящик»), часто не бывает исчерпывающим, так как сверх предсказанных свойств могут эмерджировать или внезапно проявляться новые свойства. Порождаемые свойства в полной мере присущи экономическим системам, что прибавляет трудности их исследователям.

Аксиома 1.1: любую систему преобразования входов в выходы мож­но представить как функциональную, и наоборот, просто опираясь на предположение о целесообразности ее функционирования.

Аксиома 1.2: целесообразность существования функциональной сис­темы S с точки зрения требований, предъявляемых к ней внешней средой или суперсистемой более высокого уровня, связана с выходными величи­нами Y, отражающими результаты функционирования системы S, или функциональное назначение системы.

Назовем представленный уровень исследования системно-ориентированным. В рамках данного подхода рассмотрим еще некоторые определения концептуального характера.

Определение 1.2: функциональная система S X Y называется управляемой тогда и только тогда, когда:

( y Y) ( х X) ((x,y) S)                                 (1.4)

Определение 1.2 означает, что надлежащим выбором входного воз­действия х можно добиться получения любого выходного сигнала у Y.

Определение 1.3: функциональная система S X Y называется сис­темой принятия решений, если имеется такое семейство задач D(x); х X, решением которых является элемент множества Z, и такое ото­бражение R: Z→Y, что

( x X) ( y Y) (z Z) (D(x) = z) (R(z) = y) ((x,y) S).                 (1.5)

 

В терминах системно-ориентированного подхода могут быть осуще­ствлены постановки задач управления, оптимизации, гомеостазиса и др.

Исчерпав возможности исследования функциональной системы S на данном уровне абстракции, переходят к рассмотрению системы с позиций структурно-функционального подхода, используя для этого следующее определение.

Определение 1.4: функциональная система S с позиций структурно-функционального подхода задается пятеркой символов:

S = {X, Y, Ф,G, R}.                                                  (1.6)

где Ф — макрофункция системы,

G — структура системы,

R — отношение эмерджентности,

X, Y— множества входных и выходных объектов соответственно.

Макрофункция системы Ф является количественным выражением основной; цели и зависит от управляющего воздействия ХS X . Выбор макрофункции Ф обеспечивает достижение требуемого значения Y. Ф, та­ким образом, связана с решением глобальной задачи, стоящей перед сис­темой.

Ф: XS → Y0, ХS X, Y0 Y                                         (1.7)

Соотношение между глобальной целью функционирования системы 5 и ее макрофункцией неоднозначен, обоснование выбора определенного вида макрофункции производится экспериментатором в соответствии с не­которым эвристическим критерием Ψ.

Пусть {Ф1, Ф2,...,ФK,} - некоторый конечный набор функций, связан­ных с целью системы S.

Ф=  {Фi}, i= .                                                    (1.8)

Множество входных воздействий X разбивается на два подмножест­ва — управляющих сигналов Xs и возмущающих – (Х - Xs) =Ω.

Тогда определение 1.4 можно пояснить следующим образом:

S = {X, Y, Ф,G, R},                                                    (1.9)

где X = XS Ω

Ф : XS → Y,

G = , i,j= ;                                          (1.10)

где

{Si} — множество элементов системы,

(Si, Sj) i ≠ j— множество связей между ними.

Если заданы их количественные характеристики:

рi – количественные характеристики элементов, например: интен­сивность, мощность, запас и др.;

р(i,j) – количественные характеристики связей, например: пропускная способность, ранг и др., то

G =                                     (1.10)

Отношение эмерджентности R задает соответствие между макро­функцией системы и реализующей ее структурой и изменяется всякий раз, когда это соответствие нарушается:

R:Ф → G                                                                         (1.11)

Структурно-функциональный подход выводит на новый, более глу­бокий уровень исследования. При этом решаются некоторые проблемы ме­тодологического характера:

• выбор Ф на основе качественного критерия Ψ

• формирование множества управлений Xs;

• выбор способа учета возмущающих воздействий Ω;

• выбор первичного элемента системы Si S;

• составление перечня подсистем и элементов на основе определенного метода структурной декомпозиции;

• определение системы существенных связей системы {(Si, Sj)};

• определение механизма реализации производственных целей: Ф X G →Y;

• определение механизма управления Xs → Y.

Рассмотренное понятие является полезным при проведении анализа, синтеза или другого исследования.

Необходимость учета фактора времени при описании сложной сис­темы, а также рассмотрения поведенческих аспектов в движении и разви­тии систем приводит к необходимости исследования динамической систе­мы.

Определение 1.5: динамической системой S называется сложное математическое понятие:

S = [T, Ф, X, Ω,U, Y, G, R]                                      (1.12)

определяемое следующими положениями:

1. задано множество моментов времени Т, макрофункция системы Ф, множество входных воздействий X, множество возмущений Ω, множество состояний U, множество значений выходных величин У, структура системы G и отношение эмерджентности R;

2.множество Т есть некоторое упорядоченное подмножество множества вещественных чисел;

3.макрофункция системы определяется с помощью двух функций:

S: X→Y и V: X Y→C,

где S — функциональная модель объекта,

V— функция качества, или оценочная функция,

С — множество оценок.

Макрофункция системы определяется парой (S, V).

 

4. множество возмущений Ω или множество неопределенностей представляет собой множество всевозможных воздействий, которые сказываются на поведении системы. Если такое множество непусто (Ω≠0) функциональная модель объекта принимает вид S: X Ω→Y, a оценочная функция - V: X Ω Y→ С.

5. существует переходная функция состояния

φ: T T U X → U,

значениями которой служат состояния

u(t) = φ(t, τ , u, x ) U,

в которых оказывается система в момент времени t T, если в на­чальный момент τ<t она находилась в состоянии и (τ)  U и в течение отрезка [r,t) на нее действовали входные воздействия х Х.

6. задано выходное отображение

η: T U →Y,

определяющее выходные величины y(t) = η(t,u(t)).

Пару (τ,u), где τ T,u U называют событием системы S, а множество T U - пространством состояний системы.

Конечный набор состояний системы, задаваемый переходной функцией φ и определенный на некотором временном отрезке [t1,t2], t1,t2 T, называется траекторией поведения системы на интервале [t1,t2].

Говоря о движении системы, мы будем иметь в виду траекторию поведения системы.

7. структура системы G определяется в терминах теории графов:

G =  i, j = 1,n; i ≠ j, где Si, - вершины, (Si, Sj) – дуги графа;

8. задано отношение эмерджентности

R : Ф→G.

 

Данное понятие динамической системы позволяет выработать об­щую терминологию, уточнить концептуализацию и обеспечить единый подход в рассмотрении приложений, однако является недостаточно кон­кретным.

В рамках абстрактной теории систем последнее определение допол­няется необходимыми понятиями: конечномерности, линейности, стацио­нарности и др. Однако теоретическое изложение этих вопросов в рамках данного учебника не производится: впредь по мере необходимости мы ап­риорно будем задавать тип связей между исследуемыми величинами, или классами систем: линейная непрерывная система, конечный автомат и т. д. Задачи, рассматриваемые для динамической системы, традиционны: это вопросы устойчивости, идентификации, инвариантности, наблюдаемости, управляемости и оптимальности, реализуемости и др. Углубленное изуче­ние теории вопроса позволяет грамотно и корректно ставить и решать за­дачи, связанные с управлением экономическими системами.

 

Классификация систем

Концептуализация систем в области их классификации определяется исследователем в ходе оценки закономерностей функционирования и по­ведения объекта. Основные классы систем: дискретные и непрерывные системы, статические и динамические, детерминированные и стохастиче­ские, линейные и нелинейные, открытые и замкнутые, управляемые и не­управляемые, - определяют выбор моделей, с помощью которых произво­дится собственно исследование. Это не исключает возможности в частных исследованиях систем определенной природы сконцентрировать внимание на системах более узкого класса. В экономической кибернетике большое значение имеет исследование многоуровневых, или иерархических систем, а также адаптивных и самоорганизующихся систем.

Адаптивная система — система, которая может приспосабливаться к изменениям внутренних и внешних условий.

Если воздействия внешней среды изменяются непредвиденным обра­зом, то изменение характеристик управляемого объекта также происходит непредвиденным путем. Примечательно то обстоятельство, что понятие адаптации в теории управления тождественно соответствующему понятию в биологии, означающему приспособление организма к новой для него или

изменяющейся среде.

Разновидностями адаптивных систем являются самонастраиваю­щиеся, самообучающиеся, самоорганизующиеся, экстремальные, а также системы автоматического обучения.

Одним из видов самонастраивающихся кибернетических систем яв­ляется гомеостат. Первый гомеостат был создан английским ученым У. Р. Эшби. Гомеостат моделирует характерное свойство поведения живых организмов — гомеостазис, т. е. возможность поддержания некоторых ве­личин, например, температуры тела, в физиологически допустимых грани­цах путем реализации вероятностных процессов управления. В гомеостате управляемая переменная поддерживается на требуемом уровне механиз­мом саморегулирования. Примеров гомеостазиса в природе очень много. Например, это гомеостазис, управляющий численностью животных в при­роде: чем больше появляется зайцев, тем наблюдается большее количество рысей, которые поедают зайцев, ограничивая их рост, а следовательно, и рост численности самих рысей.

Методы описания систем

Целью применения системного анализа к конкретной проблеме является повышение степени обоснованности принимаемого решения, расширение множества вариантов, среди которых производится выбор, с одновременным указанием способов отбрасывания тех из них, которые заведомо уступают другим. Во всех задачах выбора необходимо в исходном множестве найти наилучший в заданных условиях, т.е. оптимальный вариант по критерию "эффективность-стоимость" или "стоимость-эффективность" при соответствующих ограничениях. Оптимизация системы по названному критерию является главной задачей системного анализа. Нахождение оптимальных вариантов особенно важно для оценки состояния современной техники и определения перспектив ее дальнейшего развития. Понятие оптимальности получило строгое и точное представление в математических теориях, прочно вошло в практику   проектирования и эксплуатации технических систем. Многие задачи проектирования технических систем могут быть достаточно хорошо формализованы, т.е. сведены к    математическим моделям, позволяющих ставить и решать оптимизационные задачи. Однако чем сложнее система, тем осторожнее и скептичнее следует относиться к ее оптимизации, даже после успешного преодоления сложностей формализации системотехнических проблем . Системный анализ допускает, что отнюдь не все следует формализовать. В определенных ситуациях неформализуемые решения, принимаемые человеком, - более предпочтительны.

В сложных случаях, когда решение принимается, например, в условиях дефицита времени или в других экстремальных обстоятельствах, плодотворно использование ЭВМ в оценке возможных альтернатив, т.е. использование проблемно-ориентированной человеко-машинной системы. Такие системы различаются по типам задач выбора. В настоящее время существует несколько самостоятельных направлений развития человеко-машинных систем :

1. Программы и пакеты программ для решения конкретных хорошо определенных задач выбора. Примером может служить математическое обеспечение ЭВМ для статистической обработки данных (т.е. выбора в условиях стохастической неопределенности). К этому же направлению относятся системы программного обеспечения оптимизационных задач, современные базы данных и пр.;

2. Создание баз знаний и экспертных систем. Экспертная система определяется как "воплощение в ЭВМ компоненты опыта эксперта, основанной на знании в такой форме, что машина может дать интеллектуальный совет или принять интеллектуальное решение относительно выполняемой функции"*;

3. Участие лица, принимающего решения, в попытках формализовать задачу выбора, в сравнении и оценивании с помощью ЭВМ различных альтернатив разными способами.

Особое место при анализе и принятии решения занимают такие объекты, как информационная база (банки данных), диалоговые системы, имитационное моделирование **. Эти объекты, обычно воспринимаемые как части автоматизированных систем или как специальные, использующие ЭВМ методы исследования, являются важными понятиями системного анализа на современном этапе .

Организация принятия решения предполагает:

а) декомпозицию альтернатив на свойства, удобные для сравнения;

б) возможное ранжирование этих свойств по важности;

в) выбор числовых характеристик свойств (критериев) и операций предпочтения, утверждение экспертных  процедур для искусственной оценки свойств;

г) выбор методов композиции;

д) выбор вида информации для окончательного решения;

е) окончательное решение.


** Моделирование процессов с многократным отслеживанием хода их протекания каждый раз для разных условий называется имитационным моделированием.

 

Описание системы - это модель, отображающая определенную группу свойств системы. Приступая к изучению новой системы, исследователю необходимо взглянуть на нее с различных точек зрения, подойти с различных позиций и соответственно описать в нескольких функциональных плоскостях, которые следует согласовать между собой в некотором надпространстве, обладающем большей общностью. Это позволяет обнаружить новую сущность, увидеть главное, полезное, перспективное.

Описание системы должно включать :

- определение функций системы - выделение системы из ее внешней среды путем выбора границы, определение всех входов и выходов, описание функциональных соотношений между входами и выходами;

- формирование структуры системы - выделение элементов системы, определение взаимосвязей между ними, определение свойств элементов.

В соответствии с современными системными воззрениями при изучении сложных объектов (систем) следует составлять три вида описания, которые выражают принцип подхода к познанию системы:

1) морфологическое - анализ внутреннего устройства системы;

2) функциональное - анализ деятельности системы, взаимодействия со средой и между частями системы;

3) информационное - анализ степени неопределенности состояния системы и его изменения.

В наибольшей степени морфологические свойства связаны с распределением вещества, функциональные - с преобразованием энергии, а информационные - с организацией. Конечно, распределение вещества и энергетические преобразования взаимосвязаны и зависят от организации, поэтому построение единого морфо-функционально-организационного описания системы, отображающего устройство, деятельность, способность к развитию, способ развития и сущность взаимодействия со   средой, является основной проблемой системных исследований.

Любая система может изучаться извне и изнутри. Изучение извне означает рассмотрение взаимодействия системы с внешней средой, или рассмотрение функций системы. Исследование системы изнутри означает изучение ее структуры. Понятно, что    работа системы и ее внутреннее устройство тесно взаимосвязаны: нет структур без функций, как и функций без структур.

Системный анализ требует одновременного учета устройства системы и ее функций. Однако для определенных целей иногда ограничиваются изучением либо только структур, либо только функций.

Морфологическое описание

Современные технические и технологические объекты и их системы управления характеризуются большим числом элементов, множеством связей и взаимосвязей, значительным объемом перерабатываемой информации. Такие системы называют сложными, большими или системами со сложной структурой.

В отличие от традиционной практики проектирования несложных систем при разработке крупных автоматизированных, технологических, энергетических,       гидротехнических, информационных и других сложных комплексов возникают проблемы, меньше связанные с рассмотрением свойств и законов функционирования элементов, а больше - с выбором наилучшей структуры, оптимальной организацией взаимодействия элементов, определением оптимальных режимов функционирования и учетом влияния внешней среды .

Эффективность функционирования системы в первую очередь зависит от структуры и связей между ее элементами. Структура системы играет первостепенную роль как при анализе, так и при синтезе систем самого разного типа. Действительно, наиболее  важный этап разработки модели как раз и состоит в выборе структуры модели интересующей нас системы.

Для систем, состоящих из большого числа взаимосвязанных подсистем, наиболее эффективно вначале наметить основные подсистемы и установить главные взаимосвязи между ними, а затем уже переходить к детальному моделированию механизмов функционирования различных подсистем.

Характерной особенностью начального этапа проектирования является ограниченность информации о свойствах будущей системы, что заставляет в первую очередь  обращаться к структуре системы и содержащейся в ней информации. Изучение    особенностей этой информации и является предметом структурного анализа систем .

Методология исследования структуры систем основана на рациональном сочетании неформализованных эвристических методов с формализованными методами современной прикладной математики. Первые из них основываются на специфике объекта, опыте его эксплуатации, а также на интуиции исследователя, вторые - на абстрактных свойствах систем и их закономерностях.

Рассмотрение системы в таком плане приводит к математическому понятию графа, который является ее геометрическим образом. Структурные матрицы являются аналитическим образом системы (см.табл.3). Как геометрический образ граф служит для наглядного отображения систем, а структурные матрицы - для изучения их структурных особенностей, например на формализованной основе с помощью ЭВМ.

Структурный анализ систем позволяет оценить соответствие структуры системы поставленным целям ее функционирования и достичь значительной экономии времени и средств при ее проектировании.

Целями структурного анализа являются:

- разработка правил символического отображения систем;

- оценка качества структуры системы;

- изучение структурных свойств системы в целом и ее подсистем;

- выработка заключения об оптимальности структуры системы и рекомендаций по дальнейшему ее совершенствованию.

В зависимости от целей проведения структурного анализа системы ее структуру можно отобразить различными способами. Так, например, в теории автоматического регулирования наибольшее распространение получили структурные схемы, в электротехнике - электрические цепи и схемы их замещения, в теплоэнергетике - тепловые схемы и т.д.

Морфологическое описание объекта (системы) дает представление о строении (структуре) системы, о наличии и видах связей между ее элементами и содержит количественные и качественные данные.

Таким образом, в структурном подходе можно выделить два этапа: определение состава системы, т.е. полное перечисление ее подсистем, элементов, и выяснение связей между ними.

Следует различать формальную, или логическую и материальную структуры системы. Одной формальной структуре может соответствовать множество различных материальных структур.

В этом эвристическая ценность формальной структуры: она дает возможность увидеть, предположить и мысленно проанализировать возможные альтернативы ее материального наполнения и, следовательно, выбрать лучшую.

Первый этап структурного анализа, т.е. этап определения состава системы, не всегда является однозначным, может вызвать определенные затруднения, хотя, на первый взгляд, кажется тривиальным, - изучение технического объекта по его описанию, чертежу, схеме или в натуре.

Выяснение состава формальной структуры - это, по существу, выделение дескрипторов, т.е. ключевых слов или группы слов.

Так, например, установка для наращивания эпитаксиальных слоев полупроводниковых материалов включает: реакционную камеру; систему нагрева подложек; систему контроля и стабилизации температуры подложек; систему подготовки парогазовой смеси; систему ввода, распределения и вывода парогазовой смеси; систему загрузки - выгрузки подложек; систему водоохлаждения; систему управления установкой.

Характер связей между элементами системы весьма многообразен. Различают связи направленные и ненаправленные, постоянные и переменные и т.д. Следует отметить, что некоторые виды связей представляют чисто теоретический интерес, например  структуры только с равноправными связями. В реальных системах любые связи носят причинно-следственный характер, т.е. являются направленными. Наличие ненаправленных связей может свидетельствовать о нерациональном построении системы.

Структурные модели систем принадлежат к классу графов и имеют для системного анализа фундаментальное значение. Дело в том, что построение структурных моделей, которое, по сути, сводится к установлению первичных, самых простых взаимосвязей между элементами исследуемой системы, - это обязательный этап любого системного исследования. Структурные модели проясняют механизм строения исследуемого объекта  и часто являются единственным типом модели, которую удается построить.

В случае, когда необходимо построить более сложную модель объекта, структурные модели используются в качестве основы, как "первое приближение". Кроме того, они обладают наглядностью и понятны широкому кругу специалистов, служат удобной формой общения исследователей различных специальностей, а также удобной формой представления полученных результатов.

В качестве наиболее распространенных выделяют класс древовидных или иерархических структур.

Иерархическое представление структуры объекта позволяет упорядочить элементы, компоненты, подсистемы по степени их важности ("иерархии" - служебная  лестница, многоступенчатость). Иерархическая упорядоченность является одним из наиболее важных средств исследования систем.

Между уровнями иерархической структуры могут существовать взаимоотношения строгого подчинения подсистем (узлов) нижележащего уровня одной из подсистем вышележащего уровня (такие иерархии называют сильными или иерархиями типа "дерева"). Могут быть связи и в пределах одного уровня иерархии, может один и тот же узел нижележащего уровня иерархии быть одновременно подчинен нескольким узлам         вышележащего уровня (такие иерархии называют структурами со слабыми связями), могут существовать и более сложные взаимоотношения (например иерархии типа "слоев", "эшелонов" и др.).

Идеальная иерархическая    структура   (рис.1.) характеризуется следующими признаками: многоуровневость; субординация внутренних связей - элементы, подсистемы данного уровня связаны только с подсистемами (элементами) ближайших верхнего и нижнего уровней; ветвистость - подсистема данного уровня связана только с одной подсистемой верхнего уровня и с несколькими подсистемами (элементами) нижнего уровня; пирамидальность - на самом верхнем уровне имеется только одна вершина (собственно исследуемая система); субординация внешних связей - подсистемы (элементы) каждого уровня могут иметь связи с внешней средой, однако эти связи контролируются подсистемами ближайшего верхнего уровня; внешняя связь системы контролируется только извне.

Рис.1. Идеальная иерархическая структура

 

В реальных системах встречаются различные отступления от идеальной иерархической структуры (рис.2.): подсистема данного уровня связана только с одной подсистемой (элементом) нижнего уровня (рис.2.а); подсистема (элемент) данного уровня связана более чем с одной подсистемой верхнего уровня (рис.2.б); подсистема, элемент данного уровня связаны с подсистемами высших уровней, минуя ближайший верхний уровень (рис.2.в); на самом верхнем уровне имеется несколько вершин (незавершенность иерархии, рис.2.г); подсистемы, элементы одного уровня связаны между собой (внутриуровневая зависимость, рис. 2.д); связи подсистем данного уровня с внешней средой не контролируются подсистемами других уровней (нарушение субординации внешних связей, рис.2.е).           

Перечисленные типы нарушений идеальности иерархии являются единичными, на практике встречаются всевозможные их комбинации. Нарушения могут быть вызваны несовершенством самой структуры или наличием связей через внешнюю среду, т.е. подсистемы, элементы данной системы одновременно входят в другие системы с другой структурой.

Рис. 2. Типы нарушений идеальной иерархической структуры

 

Декомпозиция - последовательное разукрупнение. Этот методический прием применяется при системном анализе проблемы или объекта, помогает ничего не забыть, не упустить из виду тот или иной аспект, свойство, результат и т.д.

Для морфологического описания объекта (системы) часто используется представление его в виде дерева декомпозиции.

Построение дерева декомпозиции начинают с выделения вершины самого верхнего уровня иерархии (обычно это сам исследуемый объект). Далее осуществляют последовательное членение объекта на подсистемы вплоть до элементов  и располагают их по важности на соответствующем уровне иерархии. При этом вершинами дерева будут структурные составляющие объекты, а ребрами (ветвями) - функциональные и структурные связи.

Граф должен удовлетворять следующим условиям: не содержать замкнутых циклов (петель) и несвязанных вершин, т.е. иметь форму дерева. Для построения дерева исследуемой системы необходимо знать полный перечень всех существующих и потенциально возможных элементов, реализующих функции объекта и его подсистем.

Естественно, встает вопрос: до какого уровня следует разукрупнять объект, проблему? Уровень детализации зависит от целей исследования и определяется лицом, осуществляющим его.

Например, при проведении прогнозных исследований (нормативное прогнозирование) главная цель делится на подцели до тех пор, пока не становятся ясны пути достижения (средства достижения) каждой подцели. Заведомо достижимые цели называются элементарными.

В основу расчленения (декомпозиции) системы при ее морфологическом описании могут быть положены три подхода: объектный, функциональный и смешанный.

При объектном подходе из системы выделяют подсистемы, каждая из которых может рассматриваться как самостоятельная система соответствующего уровня иерархии. При этом каждая подсистема может быть описана информационно и функционально.

Объектный подход к декомпозиции системы рекомендуется в тех случаях, когда система имеет количественно сложную структуру при небольшой сложности и разнообразии составляющих ее подсистем. В этом случае выделяют группы сходных по свойствам подсистем и анализируют наиболее типичную подсистему каждой группы, благодаря чему существенно снижается объем описания системы. В основу функционального подхода положен функциональный признак расчленения системы. Его рекомендуется применять в том случае, когда число подсистем структурируемой системы невелико, но их функциональное описание является весьма сложным. В этом случае выделяется группа сходных функций и рассматривается возможность их реализации независимо от принадлежности к тем или иным подсистемам.

Выбор принципа расчленения зависит от множества факторов: цели исследования, природы системы, масштабности системы и др. Поэтому иногда бывает трудно принять однозначное решение о принципе формирования структуры. В таких случаях используют смешанный - объектно-функциональный - принцип расчленения системы. От выбора того или иного принципа структуирования зависит достоверность результатов    исследования системы. В практических задачах выбор принципа структурирования осуществляется с помощью экспертов, т.е. путем глубокого логического анализа совокупности целей исследования и ее основных свойств.

Достоинства отображения объекта в виде дерева заключаются в наглядности представления связей внутри системы и взаимодействия ее со средой. Однако такое представление объекта имеет и существенный недостаток. Дело в том, что дерево фиксирует только вертикальные связи между элементами системы и не отражает горизонтальные связи между ними. В результате погрешность исследования будет тем значительнее,   чем сильнее горизонтальные связи и слабее вертикальные.

При системном анализе после структуризации объекта осуществляют его анализ и синтез, заключающиеся в изучении того, как влияют отдельные локальные изменения или изменения некоторых подсистем на всю систему в целом, так  как деятельность любой части системы оказывает влияние на деятельность всех ее других частей.

Дерево декомпозиции позволяет определить соотношение между объектом и фоном, взаимосвязи между различными подсистемами и элементами объекта, очертить область поиска информации, необходимой для исследования и использования в разработке, выделить структурные элементы, подлежащие проверке на патентную чистоту, сформулировать номенклатуру технико-экономических показателей для оценки его технического уровня.

1.6. Описание системы на функциональном,
структурном и информационном уровнях

Система – упорядоченная совокупность элементов или частей, которые взаимодействуют между собой. Система представляет собой антоним хаоса. Следовательно, система – это машина, механизм, живой организм.

Для любых систем очень важно наличие интегративных качеств.

Интегративные качества – качества, присущие системе в целом, но не свойственные ни одному из ее элементов в отдельности. Отсюда вывод: система не сводится к простой совокупности элементов и расчленяя систему на отдельные части, изучая каждую из них в отдельности, нельзя познать все свойства системы в целом.

К изучению системы можно подойти на основании трех принципов:

1. Функционального. 2. Структурного.             3.Информационного.

Функциональное описание

При изучении систем прежде всего нас интересуют ее функции (что она делает). Функции системы проявляются в ее поведении. Выделяя систему из окружающего мира, устанавливаем грань между системой и окружающей средой. При этом предполагается, что внешняя среда воздействует на систему через входы системы, а система воздействует на окружающую среду через свои выходы.

где X – вектор входных переменных (часть входных воздействий можно рассматривать как управляющие);

S – вектор состояний системы; Y – вектор выходных переменных.

Сложность данной системы – это зависимость всех переменных от времени: X(t), Y(t), S(t).

, где Р – параметры системы                                (*).

Наша задача – построить математическую модель на основании системы (*).

Внешняя среда характеризуется определенной совокупностью внешних по отношению к региону экономических условий, ввозом ресурсов (инвестиционных, материальных, энергетических, трудовых).

Внутреннее состояние региональной системы может быть описано через характеристики состояния производственных фондов, внутренних финансовых ресурсов, наличием и величиной запаса материальных ресурсов, технологическими показателями и т.д.

Выходные параметры: продукция, производимая экономикой региона и вывозимая из нее, величина ее доходности.

Основная функция региональной подсистемы – производство продукции, а также подготовка кадров за счет большого количества вузов.

Система может быть однофункциональной и многофункциональной.

Однофункциональная система – это простой регулятор. Экономика является многофункциональной системой. В этом и сложность ее функционирования.

Структурное описание

Структурное описание дает представление о строении системы, т.е. об ее элементном составе, а также о наличии характера связей между элементами системы. Такое описание существенно расширяет возможности, позволяет глубже понять механизм функционирования системы, выявить зависимость ее поведения от изменения параметров, ее внутреннего состояния; активно воздействовать в процессе управления не только на входы, но и на внутренние состояния (на отдельные элементы).

Изучение структурных элементов системы обычно начинается с определения ее элементного состава. Функционирование сложной системы может быть представлено взаимодействием входящих в нее подсистем. А под элементом системы будем понимать подсистему, внутрь которой структурное описание не проникает.

С точки зрения характера отношений между элементами структуры в основной классификации обычно делят на:

- многосвязные;

- иерархические;

- смешанные.

Информационное описание

Информационное описание – это информационное отображение функционального структурного описания системы. Его результатом является соответствующее описание и построение информационной модели. Оно обеспечивает:

· получение информации от всех подчиненных данной системы, а также от внешней среды и от их воздействия на систему в целом;

· установление наиболее эффективных воздействий, а также контрольных параметров для выдачи данных, требующихся от всех подсистем;

· накопление и хранение основного массива данных;

· выработку выходной информации, которая отражает функционирование всех подсистем и системы в целом.



Дата: 2019-03-05, просмотров: 219.