Оценка письменной (контрольной, самостоятельной или проверочной) работ ы по алгебре и начала анализа
Ответ оценивается отметкой «5», если:
работа выполнена полностью; в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Оценка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два - три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Оценка «3» ставится, если:
допущено две ошибки или более трех- четырех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Оценка «2» ставится, если:
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Оценка устных ответов обучающихся по алгебре и началам анализа
Ответ оценивается отметкой«5»,если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна - две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один - два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Оценка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Оценка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Грубыми считаются ошибки:
1.Незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
2.Незнание наименований единиц измерения;
3. Неумение выделить в ответе главное;
4. Неумение применять знания, алгоритмы для решения задач;
5.Неумение делать выводы и обобщения;
6.Неумение читать и строить графики;
7.Неумение пользоваться первоисточниками, учебником и справочниками;
8.Потеря корня или сохранение постороннего корня; отбрасывание без объяснений одного из них;
9. Вычислительные ошибки, если они не являются опиской;
10.Логические ошибки
11. Вычислительные ошибки в примерах и задачах;
12.Ошибки на незнание порядка выполнения арифметических действий;
13.Неправильное решение задачи (пропуск действий, неправильный выбор действий, лишнее действие);
14.Недоведение до конца решения задачи или примера;
15. невыполненное задание
16.Неправильный выбор порядка выполнения действий в выражении;
17. Пропуск нуля в частном при делении натуральных чисел или десятичных дробей;
18.Неправильный выбор знака в результате выполнения действий над положительными и отрицательными числами; а так же при раскрытии скобок и при переносе слагаемых из одной части уравнения в другую;
19.Неправильный выбор действий при решении текстовых задач;
20.Неправильное измерение или построение угла с помощью транспортира, связанное с отсутствием умения выбирать нужную шкалу;
21.Неправильное проведение перпендикуляра к прямой или высот в тупоугольном треугольнике;
22.Умножение показателей при умножении степеней с одинаковыми основаниями;
23.“Сокращение” дроби на слагаемое;
24. Замена частного десятичных дробей частным целых чисел в том случае, когда в делителе после запятой меньше цифр, чем в делимом;
25. Сохранение знака неравенства при делении обеих его частей на одно и тоже отрицательное число;
26.Неверное нахождение значения функции по значению аргумента и ее графику;
27.Потеря корней при решении тригонометрических уравнений
непонимание смысла решения системы двух уравнений с двумя переменными как пары чисел;
28.Незнание определенных программой формул (формулы корней квадратного уравнения, формул производной частного и произведения, формул приведения, основных тригонометрических тождеств и др.);
29.Приобретение посторонних корней при решении иррациональных, показательных и логарифмических уравнений;
30.Неумение сформулировать предложение, обратное данной теореме;
ссылка при доказательстве или обосновании решения на обратное утверждение, вместо прямого;
31.Использование вместо коэффициента подобия обратного ему числа;
чертеж к задаче не соответствует условию задачи и другие.
К негрубым ошибкам следует отнести:
1.Неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
2. Неточность графика;
3. Нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
4.Нерациональные методы работы со справочной и другой литературой;
5.Неумение решать задачи, выполнять задания в общем виде;
6.Грамматические ошибки в математических терминах;
7.Неверно сформулированный ответ задачи;
8.Неправильное списывание данных (чисел, знаков);
9.Не доведение до конца преобразований и другие.
Недочетами являются:
1.Нерациональные приемы вычислений и преобразований;
2.Небрежное выполнение записей, чертежей, схем, графиков.
Дата: 2019-03-05, просмотров: 441.