Это уравнение отражает воздействие на параметры потока формы канала. Для его вывода рассмотрим стационарное течение в канале (G=const). Из уравнения расхода:
, или , (1)
после его дифференцирования имеем:
. (2)
Разделим выражение (2) на уравнение (1) почленно.
Тогда имеем:
, или . (3)
Из уравнения адиабатного процесса
, (4)
после дифференцирования получим:
,
или . (5)
Разделим выражение (5) на . Тогда:
. (6)
где ; а – скорость звука, м/с; - vdp=WdW – уравнение Бернулли. После подстановки выражения (6) в уравнение (3) имеем:
, (7)
или
, (8)
где - число Маха. Правая часть уравнения обращения воздействий для адиабатного изоэнтропийного течения идеального газа (8) содержит основные параметры потока: число Маха и изменение скорости , а левая часть – отражает воздействие на течение среды изменения площади поперечного сечения канала df, т.е. формы канала.
Рассмотрим воздействие формы канала df на адиабатное течение в соплах и диффузорах. Сопла – это каналы, в которых происходит расширение газа и увеличение скорости его движения. В диффузорах происходит сжатие газа и уменьшение скорости его движения.
Течение в соплах
Для течения в соплах, где газ расширяется и скорость растет dW>0. При этом знак df будет одинаковым со знаком скобки (М2-1) уравнения (8).
Если на входе в сопло число Маха M<1 и разность (М2-1) – отрицательна, то сопло является суживающимся, т.е. df<0.
Если на входе в сопло число Маха М>1, то разность (М2-1) – положительна и df>0, т.е. сопло – расширяющееся. Увеличение скорости течения при М>1 происходит за счет увеличения площади поперечного сечения канала.
Течение в диффузорах
В диффузорах, где происходит сжатие газа и уменьшение скорости его движения, dW<0 и знак df противоположен знаку выражения (М2-1). При M>1 df<0, т.е. диффузор суживающийся. При M<1 df>0, т.е. диффузор расширяющийся.
Таким образом, один и тот же канал в зависимости от величины скорости газа на входе в канал может работать и как диффузор и как сопло. В суживающемся сопле нельзя достичь скорости газа, большей, чем местная скорость звука. Для получения скорости истечения большей скорости звука должны применяться комбинированные сопла – сопла Лаваля.
15 Сопло́ Лава́ля — газовый канал особого профиля, разгоняющий проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей.
Сопло представляет собой канал, суженный в середине. В простейшем случае такое сопло может состоять из пары усечённых конусов, сопряжённых узкими концами. Эффективные сопла современных ракетных двигателей профилируются на основании газодинамических расчётов.
Сопло было предложено в 1890 г. шведским изобретателем Густафом де Лавалем для паровых турбин.
Дата: 2019-03-05, просмотров: 225.