Возникает вопрос, всегда ли и насколько необходимо учитывать нерациональность поведения людей в задачах экономического выбора?
Одной из важнейших в экономике задач является задача предсказания поведения потребителя по отношению к конкрет ным группам товаров или услуг. Знание такого поведения по зволяет определить спрос на товар (услугу), подсчитать, сколь ко нужно производить товаров (услуг) и по какой цене их можно продавать.
Экономисты различают наблюдаемые предпочтения и вы являемые предпочтения потребителей. Наблюдаемые предпочтения определяются на основе изучения данных о покупках и продажах. Строятся математические модели, описывающие спрос покупателей на определенные товары (услуги). Такие модели позволяют предсказать поведение покупателей по отно шению к данному товару (услуге) или близким к нему [10].
Знание человеческого поведения, человеческих эвристик не дает ничего нового при определении наблюдаемых предпочтений. Действительно, пусть поведение потребителей отличается от рационального - модель опишет такой вид поведения по на блюдаемому выбору. Ее прогностические способности не изме нятся. Пусть, например, известно, что выбор отдельным поку пателем сорта чая осуществляется нерационально. Но для про изводителей чая важны лишь данные о спросе на тот или иной сорт чая для большой группы покупателей (жителей города, области и т.д.). Зависимость спроса на чай от его цены опреде ляется для группы в целом, и на нее мало влияет, насколько рациональны люди при покупке чая.
По-иному обстоит дело с выявляемыми предпочтениями, когда требуется предсказать спрос на основе опроса (мнений) потребителей еще до их выбора. Ясно, что результаты психологических исследований имеют непосредственное и весьма важное значение при выявлении предпочтений потребителей. Для получения надежных данных на основе выявляемых предпоч тений необходимо строить опросы с учетом человеческих эври стик [10]. Особое значение имеет форма постановки вопро сов, возможные влияния точки отсчета, феномен сверхуверенности и т.д.
При анализе решений производителей товаров (и услуг) знание нерационального человеческого поведения также весьма важно. Правда, существует мнение [11], что рынок приучает к рациональности, что значительные отклонения от рациональности могут привести к разорению ЛПР. Однако это не позволяет определить, насколько успешно такое обучение.
Стремление учесть реальное поведение людей и приблизить теорию к жизни привело к появлению теории проспектов, разработанной А. Тверским и Д. Канеманом [12, 13].
Теория проспектов
Теория проспектов была разработана для того, чтобы учесть реальные черты человеческого поведения в задачах с субъективными вероятностными оценками. Ставилась цель за менить теорию ожидаемой полезности в качестве средства, по зволяющего человеку выбирать предпочтительные варианты действий.
Теория проспектов позволяет учесть три поведенческих эффекта:
Рассмотрим игру (х, р, у, q ), где исход х осуществляется с вероятностью р, исход у — с вероятностью q , а нулевой исход — с вероятностью 1-р- q (рис. 2.10). В теории проспектов игра, представленная на рисунке, называется проспектом. Оценива ется ценность (а не ожидаемая полезность) этой игры по сле дующей формуле:
V = V ( x ) xor П(р)+ V (у) xor П( q ),
где V ( x ), V ( y ) - ценность исходов х, у соответственно, V (0)=0 и П(р), П( q ) - вес (важность) вероятностей р, q соответственно.
Рис. 2.10. Представление проспекта
Мы видим первое отличие теории проспектов: вместо веро ятностей используется функция от вероятностей.
Проанализируем другие отличия теории проспектов от тео рии полезности. Во-первых, полезность в теории полезности определялась как прибавление (может быть, и отрицательное) к первоначальному благосостоянию человека. Ценность же от считывается от любого уровня, принятого за исходный. Во- вторых, предполагается (для учета поведенческих аспектов), что функция V ( x ) ценности - выпуклая для выигрышей и во гнутая для потерь (рис. 2.11), причем ее изменение для потерь будет больше, чем для выигрышей.
Важное различие двух теорий состоит в учете вероятностей исходов. Если в теории полезности вероятность умножается на полезность исхода, то в теории проспектов используется функ ция вероятности П(р), представленная на рис. 2.12. Эта функ ция также построена специальным образом для учета поведен ческих аспектов. Прежде всего П(р) не подчиняется всем зако нам теории вероятностей. Отметим следующие свойства П(р):
Рис. 2.11. Функция ценности
Вес вероятности
Рис. 2.12. Весовая функция вероятности
Теперь мы можем привести последовательность этапов, ре комендуемую при применении теории проспектов для выбора между различными вариантами действий.
1. Осуществляется редактирование проспекта; этап опреде лен достаточно неформально. В него входит следующее:
2. Подсчитываются значения ценности для разных вариан тов действий по формуле, приведенной выше, после чего выби рается вариант с наибольшей ценностью.
Дата: 2019-02-19, просмотров: 259.