Лекция 4. Порядок расчета стержневых систем методом конечных элементов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Порядок расчета сооружений МКЭ можно разбить на три основные этапа: подготовительный, вычислительный и обработку результатов.

1. Подготовительный этап включает в себя. Изображение расчетной схемы рассматриваемого сооружения, разбиение расчетной схемы на отдельные элементы, нумерацию узлов и элементов, выбор общей системы осей координат. Затем составляются исходные матрицы: матрицы жесткости отдельных элементов в местной системе осей координат [r]j и матрицы направляющих косинусов [c]j , формируют вектор внешних нагрузок {P}, предварительно преобразовав вне узловую нагрузку к узловой.

2. Вычислительная часть расчета включает в себя. Вначале вычисляют матрицы жесткости

отдельных элементов в общей системе осей координат

                                                  [r]j = [c]j [r]j [c]j ,

затем, из блоков этих матриц формируют матрицу жесткости [r] для сооружения в целом.

       По формуле

                                                   {Z} = [r]-1 {P}

вычисляют вектор перемещений узловых точек сооружения в общей системе осей координат.

       Вектор узловых усилий для отдельных КЭ в общей системе осей координат

                                                   {S}j = [r]j {Z}j

и в местной системе осей координат

                                                   {S}j = [c]j {S}j .

       Результирующие усилия в узлах отдельных КЭ в местной системе осей координат, с учетом преобразований вне узловой нагрузки

                                                   {S}j= {S}j + {S0}j .

3. Обработка результатов. Полученные усилия {S}j прикладывают к узлам отдельных элементов и по ним строят результирующие эпюры M, Q, N.

       Пример.

       Порядок расчета рамы МКЭ рассмотрим на конкретном небольшом примере. Заданная рама показана на рисунке слева

Заданная рама и основная система МКЭ

 

       Основную систему МКЭ выбираем разбивая раму на три прямолинейных конечных элемента (КЭ). Нумеруем узлы и элементы.

В узле 3 элементы соединяются между собой жестко, с этим узлом связаны три неизвестных перемещения. В узле 2 элементы соединяются шарниром, здесь два неизвестных перемещения. В опорных узлах 1 и 2 все три перемещения равны нулю. Следовательно, рассматриваемая рама имеет пять неизвестных перемещений в МКЭ. Положительные направления перемещений и внешних нагрузок принимаем как показано на рисунке.

Общую систему осей координат располагаем таким образом, чтобы координаты всех узлов были положительными.

Распределенную по ригелю нагрузку приводим к узловой, используя для этого таблицы метода перемещений.

                  

Преобразование вне узловой нагрузки к узловой

 

Составляем исходные матрицы. Вектор внешних нагрузок Р для сооружения в целом, в общей системе осей координат и векторы преобразований вне узловых нагрузок к узловым для КЭ в местных системах осей координат Si0 имеют вид

 

 

       Матрицы жесткости для КЭ в местной системе осей координат составляются следующим образом. Матрица жесткости для первого элемента имеет размерность 3х3, т.к. три перемещения связанные с узлом 1 равны нулю, поэтому из матрицы для элемента с двумя жесткими узлами вычеркиваем три первых строки и три первых столбца. Для второго элемента матрица жесткости имеет размер 5х5. Для третьего 2х2. Локальная (местная) система осей координат связана с отдельным элементом, ось X направлена вдоль стержня от начального узла к конечному, а ось Y нормально к ней.

 

 

 

 

       Матрицы направляющих косинусов, имеют ту же размерность, что и матрицы жесткости: для первого элемента 3х3, для второго 5х5, для третьего 2х2. Поворот элементов осуществляется против часовой стрелки, вокруг начального узла из горизонтального положения до положения как в конструкции. В нашем случае j1=900, j2=00, j3=1270. Матрицы направляющих косинусов записываются

 

 

          

 

           

 

Матрицы жесткости отдельных элементов в общей системе осей координат вычисляют по формуле

 

где  - транспонированная матрица направляющих косинусов для i-того элемента.

После перемножения соответствующих матриц, получаем

 

 

 

Матрица жесткости сооружения в целом формируется из блоков матриц жесткости отдельных элементов следующим образом:

           

 

где  - блок реакций, возникающих за счет упругих свойств первого элемента, в связях наложенных на третий узел, от единичных смещений этих же связей и т.д.

 

После обращения матрицы r по известным стандартным процедурам, вектор перемещений Z определяется по формуле

 

Векторы узловых усилий в стержнях в общей системе осей координат вычисляем по формуле

,

в результате вычислений имеем :

 

 

       

 

               

       Усилия в узлах конечных элементов в местной системе осей координат, с учетом векторов преобразований нагрузок, определяются

                                                    ,

 

в нашем случае, в результате вычислений имеем

 

               

        

 

 

 

Имея векторы усилий в местной системе осей координат, прикладываем их к соответствующим узлам отдельных элементов и строим эпюры внутренних усилий.

Эпюры внутренних усилий

 

       Для выполнения статической проверки, покажем расчетную схему рамы с заданными нагрузками и опорными реакциями. Направления и величины опорных реакции определяем по эпюрам.

           

Условия статического равновесия записываются

              21 + 0.38 sina - 35.5cosa = 0;

               51.35 + 0.38 cosa + 35.5 sina -q · 4 = 0;

           q · 4 · 5 - 51.35 · 7 - 38.6 - 35.5 = 0.

 

 

Приложение. Формирование матрицы жесткости плоского треугольного конечного элемента в локальной системе осей координат

 

Для расчета конструкций, испытывающих плоское напряженное состояние, плоский треугольный конечный элемент является одним из наиболее удобных типов конечных элементов, т.к. позволяет наиболее просто и удобно получить на конструкции сетку узлов требуемой густоты.

Рассмотрим процесс формирования матрицы жесткости плоского треугольного 3-х узлового конечного элемента с узлами i, j, m, обозначенными в направлении обхода против часовой стрелки.

 

К построению матрицы жесткости треугольного КЭ

 

Смещения в узле имют 2 компонента - ui и vi. Тогда вектор узловых смещений элемента может быть представлен как

                                                                                                        (1)

 

Самое простое представление смещения u и v точек с координатами x и y внутри элемента через смещения узловых точек может быть получено на основе использования 2-х линейных многочленов:

                                                                                        (2)

 

Постоянные a1 - a6 можно получить, решая две системы из 3-х уравнений, введя координаты узлов и приравняв их смещения соответствующим узловым смещениям:

 

                          (3)

 

Подставив решения систем (3) в выражения (2) окончательно получим выражения для u и v

       (4)

где D - площадь треугольника,

Коэффициенты aj, bj, cj, am, bm, cm можно получить циклической перестановкой индексов в последовательности i, j, m.

 

Относительная деформация в любой точке элемента определяется с помощью трех компонентов, вносящих вклад во внутреннюю работу, которая с помощью уравнений (4) может быть записана как

    (5)

 

Учитывая, что для треугольного элемента постоянной толщины общее выражение для матрицы жесткости может быть упрощено, т.е.

                                                           (6)

 

и учитывая, что матрица упругости ( закона Гука) для случая плоского напряженного состояния имеет вид

                                                                           (7)

 

окончательно выражение для матрицы жесткости плоского треугольного элемента имеет вид:

                                                (8)

где

Использование полученной матрицы жесткости в дальнейших конечно-элементных операциях ничем не отличается от использования матрицы жесткости стержневого конечного элемента. Естественно, результатом расчета в этом случае будут усилия соответствующие компонентам перемещений, указанным на Рис. , т.е. , которые могут быть преобразованы к напряжениям в центре тяжести конечного элемента .

 


Дата: 2019-02-19, просмотров: 228.