Бесконтактные системы управления электроприводами ГПМ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Основные сведения

Развитие полупроводниковой техники позволило перейти от контактных схем управления судовыми электроприводами к бесконтактным.

В контактных схемах для переключения цепей используют медные контакты, а в .

в бесконтактных полупроводниковые приборы двух видов:

3. транзисторы;

4. тиристоры.

Транзисторы применяют для управления слаботочными цепями с токами до десят-

ков ампер, тиристоры – для управления мощными силовыми цепями электроприводов с токами в десятки, сотни и тысячи ампер.

       В судовых электроприводах для переключения силовых электрических цепей при-

меняют комплектные устройства, серийно выпускаемые промышленностью – тиристор-

ные коммутаторы ( см. ниже ).

Достоинства тиристорных коммутаторов:

1. практически неограниченный срок службы, т.к. эти коммутаторы допускают до

1 миллиона включений ( по сравнению с 200…300 тысячами включений у электромагнит-

ных контакторов );

2. высокое быстродействие, т.к. тиристорные коммутаторы включаются практиче-

ски мгновенно, в то время как собственное время включения электромагнитных контакто-

ров составляет сотые и даже десятые доли секунды;

3. малая мощность управления, необходимая для включения коммутатора – до 3 Вт,

эта же мощность у электромагнитных контакторов доходит до 30 Вт;

3. простота обслуживания, т.к. при выходе из строя коммутатора он заменяется

новым.

Недостатки тиристорных коммутаторов:

1. меньшая перегрузочная способность ( по току ), при перегрузке тиристоры сго-

рают, в то время как контакты электромагнитных контакторов легко выдерживают значи-

тельные перегрузки;

2. ограниченное число коммутируемых цепей ( один тиристор – одна цепь ), у эле

ктромагнитных контакторов наибольшее число коммутируемых силовых цепей - 3;

3. гораздо большие габариты, масса и стоимость по сравнению с электромагнитны-

ми контакторами.

Тиристорные коммутаторы

Тиристорным коммутатором называется схема, состоящая из 2-х встречно-парал-

лельно включенных тиристоров и предназначенная для коммутации одного полюса цепи

( рис. 13.33 )..

Рис. 13.33.. Схема тиристорного коммутатора переменного тока

           

К элементам схемы тиристорного коммутатора относятся:

VS1 и VS2 – два встречно-параллельно включённых тиристора;

VD1…VD4 – т.н. развязывающие диоды, предназначены для образования двух и

более цепей постоянного тока при питании этих цепей от одного источника постоянного тока;

R – токоограничивающий резистор в цепи тока управления тиристора, для получе-

ния необходимого значения тока управления ( десятки – сотни миллиампер ) при питании цепи управления напряжением в десятки и сотни вольт;

К – контакт реле, управляющий включением-выключением тиристоров ( катушка реле на схеме не показана ).

Для подготовки схемы к работе подают переменное напряжение на её выводы.

В исходном состоянии коммутатора контакт К1:1 реле разомкнут, поэтому тиристо

ры VS1 и VS2 заперты и ток не пропускают. Такое состояние тиристоров равнозначно раз

рыву цепи между точками «А» и «В».

Для включения коммутатора подают питание на катушку реле К1 ( катушка на схе

ме не показана ), при этом контакт К1:1 замыкается.

В условную положительную полуволну переменного напряжения сети полярность напряжения на выводах «А» и «В» такая: «плюс» на выводе «А», «минус» на выводе «В».

При такой полярности образуется цепь тока управления тиристора VS1:

«плюс» на выводе «А» - VD1 – K1:1 – R – VD4 – управляющий электрод VS1 – ка-

тод VS1 - «минус» на выводе «В».

 

Тиристор включается и становится диодом, пропуская через себя ток по цепи:

«плюс» на выводе «А» - анод VS1 – катод VS1 - «минус» на выводе «В».

Эта же полуволна напряжения удерживает тиристор VS2 закрытым, т.к. «плюс» на

выводе «А» приложен к катоду VS2, а «минус» на выводе «В» - к аноду VS2. т.е. анодное напряжение с такой полярностью является обратным для тиристора.

По этой же причине во вторую полуволну напряжения ( «плюс» в точке В, «минус» в точке А ) тиристор VS1 автоматически запирается, но возникает аналогичная цепь тока управления тиристора VS2:

«плюс» на выводе «В» - VD3 - R – K1:1 VD2 – управляющий электрод VS2 – катод

VS2 - «минус» на выводе «А».

Тиристор включается и становится диодом, пропуская через себя ток по цепи:

«плюс» на выводе «В» - анод VS2 – катод VS2 - «минус» на выводе «А».

Таким образом, напряжение сети автоматически поочерёдно переключает ( комму

тирует ) тиристоры, что равнозначно соединению накоротко выводов «А» и «В». Такую коммутацию тиристоров называют естественной.

Из сказанного следует, что тиристорный коммутатор подобен обычному медному

контакту:

1. если тиристоры VS1 и VS2 закрыты, то цепь между точками А и В разорвана,

что равнозначно разомкнутому медному контакту;

2. если же тиристоры открыты, то цепь между точками А и В соединена через ти-

ристоры накоротко, что равнозначно замкнутому медному контакту;

На базе тиристорных коммутаторов были созданы тиристорные контакторы пере-

менного тока.

       Тиристорным контактором называется схема, состоящая из 2-х тиристорных комму

таторов ТК1 и ТК2 , конструктивно объединенных в одном блоке ( корпусе ).( рис. 13.34 ).

       Для контроля исправности тиристоров тиристорный контактор может дополняться

блоком контроля исправности тиристоров.

         

                   Рис. 13.34 Схема тиристорного контактора и блока контроля

 

Работа тиристорного контактора ТК1 ( ТК2 ) объяснена выше, поэтому объясним

работу блока контроля исправности тиристоров

 

Дата: 2019-02-02, просмотров: 385.