Возможные выводы при экономич. интерпретации оптимального распределения для открытых транспортных задач.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

При получении оптимального распределения необходимо вернуться к исходной задаче и сделать соответствующие экономич. выводы. Они следующие:

1. если введен пункт потребления, то это означает, что в анализируемоой системе излишни объемы производства, и можно без ущерба для рассматриваемой системы уменьшить мощности тех пунктов производства на величину привязки, которые привязались к фиктивному пункту потребления.

2. если же введен фиктивный пункт производства, то это означает, что мощностей реальных пунктов производства не хватает и их необходимо увеличить. Увеличиваются мощности тех пунктов производства, которые ближе всего расположены к пунктам потребления, привязанным к фиктивному пункту производства. Производится увеличение мощности производителя на величину привязки. Для этого рассматривают столбец пункта потребления, который привязан к фиктивному пункту производства, и находят в нем наименьший тариф. Мощность соответствующего этому тарифу пункта производства наиболее эффективно увеличить на величину привязки.

 

57.Понятие двойственности. Экономическая постановка двойственных задач на примере задачи об оптимизации плана выпуска продукции.

Двойственная задача - это вспомогательная задача линейного программирования, формулируемая с помощью определенных правил непосредственно из условий исходной, или прямой задачи.

Пусть имеется зада об оптимизации плана выпуска продукции. Она имеет следующий вид:

Исходная задача:

а11х112х2+…+ а1пхп≤в1         |у1

а21х122х2+…+ а2пхп≤в2         |у2

………………..                                            |.. (1)

ат1х1т2х2+…+ атпхп≤в1      | ут

 

xj≥0, j = 1,n(2)

 

z = c1x1+c2x2+…+cnxn ->max(3)

 _

 X = (x1,x2,…, xn)

aij – кол-во сырья i- го вида, затраченного для выпуска j-го вида продукции

Двойственная задача

Пусть предприятие по какой-либо причине не может выпускать продукцию. Для того, чтобы уменьшить затраты простоя, предприятие может реализовать сырье, которое у него имеется. По каким ценам нужно реализовать сырье?

уi- цена i- го вида сырья имеющегося на предприятии.

а11у121у2+…+ ат1ут≥с1        

а12х122у2+…+ ат2хп≥с2        

………………..                                                  (1’)

а1пу12пу2+…+ атпут≥сп           

 

уi≥0, j = 1,m(2’)

 

F = b1y1+b2y2+…+bmym ->min(3’)



Соответствие между структурными элементами прямой и двойственной задачи

Каждой задаче линейного программирования можно сопоставить

двойственную задачу по следующим правилам:

1. Во всех ограничениях исходной задачи свободные члены должны

находиться справа, а члены с неизвестными - слева.

2. Ограничения-неравенства исходной задачи должны иметь знаки,

направленные в одну строну.

3. Если целевая функция в исходной задаче минимизируется, ограничения-неравенства следует записать со знаком «≤» , тогда в двойственной задаче целевая функция будет минимизироваться и знаки ограничений-неравенств будут «≥».

4. Каждому ограничению исходной задачи соответствует переменная в

двойственной задаче. Если переменная соответствует неравенству, она неотрицательна, если равенству – то переменная без ограничений на знак («произвольная»).

5. Коэффициенты при переменных в ограничениях двойственной задачи получаются транспонированием матрицы, составленной из

коэффициентов при переменных исходной задачи.

6. Свободные члены исходной задачи являются коэффициентами при

переменных в функции цели двойственной задачи, а свободными

членами в двойственной задаче – коэффициенты при переменных в

функции исходной задачи.Отметим также, что соотношение двойственности взаимное, т.е. задача, двойственная по отношению к двойственной, совпадает с исходной.Двойственные пары задач подразделяются на симметричные и несимметричные. В симметричной паре ограничения прямой и двойственной задач являются нестрогими неравенствами и, следовательно, переменные обеих задач могут принимать только неотрицательные значения.

Дата: 2019-12-22, просмотров: 237.