Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Мода и медиана являются структурными средними величинами, характеризующими (наряду со средней арифметической) центр распределения единиц совокупности по изучаемому признаку.

Мода Мо для дискретного ряда – это значение признака, наиболее часто встречающееся у единиц исследуемой совокупности[1]. В интервальном вариационном ряду модой приближенно считается центральное значение модального интервала (имеющего наибольшую частоту). Более точно моду можно определить графическим методом по гистограмме ряда (рис.1).

Рис. 1 Определение моды графическим методом

Конкретное значение моды для интервального ряда рассчитывается по формуле:

                   (3)

где хМo – нижняя граница модального интервала,

h –величина модального интервала,

fMo – частота модального интервала,

fMo-1 – частота интервала, предшествующего модальному,

fMo+1 – частота интервала, следующего за модальным.

Согласно табл.1.3 модальным интервалом построенного ряда является интервал 0,216 – 0,264 млн руб./чел., так как его частота максимальна (f3 = 12).

Расчет моды по формуле (3):

 млн руб./чел.

Вывод. Для рассматриваемой совокупности организаций наиболее распространенный уровень производительности труда характеризуется средней величиной 0,245.

Медиана Ме – это значение признака, приходящееся на середину ранжированного ряда. По обе стороны от медианы находится одинаковое количество единиц совокупности.

Медиану можно определить графическим методом по кумулятивной кривой (рис. 2). Кумулята строится по накопленным частотам (табл. 5, графа 5).

Рис. 2. Определение медианы графическим методом

Конкретное значение медианы для интервального ряда рассчитывается по формуле:

,                                  (4)

где хМе– нижняя граница медианного интервала,

h – величина медианного интервала,

– сумма всех частот,

fМе – частота медианного интервала,

SMе-1 – кумулятивная (накопленная) частота интервала, предшествующего медианному.

Для расчета медианы необходимо, прежде всего, определить медианный интервал, для чего используются накопленные частоты (или частости) из табл. 5 (графа 5). Так как медиана делит численность ряда пополам, она будет располагаться в том интервале, где накопленная частота впервые равна полусумме всех частот  или превышает ее (т.е. все предшествующие накопленные частоты меньше этой величины).

В демонстрационном примере медианным интервалом является интервал 0,216 – 0,264 млн руб./чел., так как именно в этом интервале накопленная частота Sj = 19 впервые превышает величину, равную половине численности единиц совокупности ( = ).

Расчет значения медианы по формуле (4):

 млн руб./чел.

Вывод. В рассматриваемой совокупности организаций половина организаций имеют в среднем уровень производительности труда не более 0,248 млн руб./чел., а другая половина – не менее 0,248 млн руб./чел..

Дата: 2019-12-22, просмотров: 279.