Ранговые коэффициенты корреляции по Спирману и Кендалу
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Для переменных, принадлежащих к порядковой шкале или для переменных, не подчиняющихся нормальному распределению, а также для переменных принадлежащих к интервальной шкале, вместо коэффициента Пирсона рассчитывается ранговая корреляция по Спирману. Для этого отдельным значениям переменных присваиваются ранговые места, которые впоследствии обрабатываются с помощью соответствующих формул. Чтобы выявить ранговую корреляцию, уберите в диалоговом окне Bivariate Correlations... (Парные корреляции) метку для расчета корреляции по Пирсону, установленную по умолчанию. Вместо этого активируйте расчет корреляции Спирмана. Это расчет даст следующие результаты. Коэффициенты ранговой корреляции весьма близки к соответствующим значениям коэффициентов Пирсона (исходные переменные имеют нормальное распределение).

titkova-matmetody.pdf с. 45

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление

корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений,

которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же

набору признаков;

3) две групповые иерархии признаков,

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков.

Как правило, меньшему значению признака начисляется меньший ранг.

В первом случае (два признака) ранжируются индивидуальные значения по первому

признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму

признаку.

Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по

одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по

одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs

необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим

признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем

меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет

никакого соответствия. Формула составлена так, что в этом случае rs окажется близким к 0.

В случае отрицательной корреляциинизким рангам испытуемых по одному признаку

будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение

между рангами испытуемых по двум переменным, тем ближе rs к -1.

Во втором случае (два индивидуальных профиля), ранжируются индивидуальные

значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них

обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг –

признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в

одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно

проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в

"сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до

20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по

выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки,

имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот.

Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то и у

другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С

(эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по

этому фактору высокий ранг и т.д.

В третьем случае (два групповых профиля), ранжируются среднегрупповые значения,

полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору

признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

В случае 4-ом (индивидуальный и групповой профили), ранжируются отдельно

индивидуальные значения испытуемого и среднегрупповые значения по тому же набору

признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он

не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный

профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и

групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется

по количеству ранжированных значений N. В первом случае это количество будет совпадать с

объемом выборки n. Во втором случае количеством наблюдений будет количество признаков,

составляющих иерархию. В третьем и четвертом случае N – это также количество сопоставляемых

признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах. Если

абсолютная величина rs достигает критического значения или превышает его, корреляция

достоверна.

Гипотезы.

Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным

случаям.

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H1: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H1: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Дата: 2016-10-02, просмотров: 253.