Решение задачи симплекс-методом
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Рассмотрим числовой пример.

Пусть имеем игру с платежной матрицей:

 

 

Проверим, имеет ли наша матричная игра седловую точку? Для этого используем принцип максимина.

Выигрыш игрока А:a =  = 2 он достигается в первой строке.

Выигрыш игрока В:в =  = 3 он достигается в четвертом столбце.

Как видим, выигрыши игроков не совпадают, значит у матрицы нет седловой точки. Значит, нужно искать смешанные стратегии.

В данном конкретном случае в множестве ограничений будет четыре неравенства (т.к. в условии задачи четыре столбца). Пересчитывать симплекс- таблицы с четырьмя строками не очень сильно хочется, поэтому удобнее решить двойственную задачу (для коэффициентов вектора смешанной стратегии второго игрока), в которой будет всего две строки (т.к. в условии задачи две строки):

найти вектор двойственных переменных Y = {y1, y2, … yn}, такой что:

целевая функция g =  max

при множестве ограничений:АY ≤ Е

Для нашего примера задача линейного программирования будет такой:

найти вектор Y = {y1, y2, y3, y4}, такой что:

целевая функция g =  max

при множестве ограничений:

 

 

Далее нужно вспомнить методику применения симплекс-метода и использовать её для нашей задачи.

Однако, как показывает многолетняя практика, студенты обладают так называемой "краткосрочной памятью", которая работает только до сдачи необходимого экзамена. Поэтому вспомнить сейчас методику применения симплекс-метода вряд ли кто-то сможет. Для этого нужно сходить в библиотеку, найти специальную литературу и умело ей воспользоваться. Осмелимся заметить, что и этого половина студентов сделать поленится и благополучно завалит данную тему J . #

Поэтому для всеобщего блага приведем здесь методику применения симплекс-метода (пройденного и успешно сданного в математическом программировании) для нашей конкретной задачи.

1 этап – приведение задачи линейного программирования к каноническому виду.

Неравенства во множестве ограничений нужно превратить в равенства с помощью добавления искусственных переменных. Для того чтобы неравенства превратить в равенства, надо в каждое неравенство добавить (или отнять – в зависимости от знака неравенства) искусственную переменную:

 

 

Целевая функция при этом будет выглядеть так:g = y1 + y2 + y3 + y4 + 0y5 + 0y6

2 этап – определение начального опорного плана.

В полученном случае начальный опорный план будут составлять искусственные переменные, входящие в ограничения с коэффициентами +1 :{ y5 ; y6 }. Новых искусственных переменных для данной задачи вводить не требуется.

3 этап – заполнение исходной симплекс-таблицы.

Исходная симплекс-таблица для нашей двойственной задачи будет иметь вид:

В столбец "текущий базис" ставим переменные, начального опорного плана : { y5 ; y6 }.

В столбец "сi" ставим их коэффициенты в целевой функции.

В столбец "А0" ставим вектор ограничений Е : а10 = 1 ;а20 = 1 .

В самую верхнюю строку таблицы ставим коэффициенты cj при соответствующих переменных в целевой функции:c1 = 1 ; c2 = 1 ; c3 = 1 ; c4 = 1 ; c5 = 0 ; c6 = 0 .

В столбцы "А1", ...., "А6" ставим соответствующие коэффициенты матрицы ограничений А.


Вычисляем оценки по формулам

 

D0 =  ; .Dj =   cj

 

и ставим их в самую нижнюю строку симплекс-таблицы (строку оценок) :

 

D0 =  = 0 * 1 + 0 * 1 = 0D1 =   c1 = 0 * 4 + 0 * 3  1 =  1

D2 =   c2 = 0 * 3 + 0 * 7  1 =  1D3 =   c3 = 0 * 8 + 0 * 1  1 =  1

D4 =   c4 = 0 * 2 + 0 * 3  1 =  1D5 =   c5 = 0 * 1 + 0 * 0  0 = 0

D6 =   c6 = 0 * 0 + 0 * 1  0 = 0

 

4 этап – пересчет симплекс-таблицы.

1. Если j ³ 0 для всех j = 1, 2, .... , n , то данный план (в столбце "текущий базис") – оптимален. В нашем случае это условие не выполняется, значит, текущий базис можно улучшить.

2. Если имеются k <  и в столбце Аk все элементы aik  0 , то целевая функция не ограничена сверху на допустимом множестве и данная задача не имеет смысла. В нашем случае видим, что целевая функция сверху ограничена.

3. Если имеются j <  и в столбцах Аj , соответствующих этим оценкам, существует хотя бы один элемент aik > 0, то возможен переход к новому лучшему плану, связанному с большим значением целевой функции. У нас так и есть.

4. Переменная хk, которую необходимо ввести в базис, для улучшения плана соответствует наименьшей отрицательной оценке j. Столбец Ak, содержащий эту оценку называется ведущим. В нашем случае все оценки одинаковы. Поэтому в качестве ведущего столбца выберем любую оценку, например, третью: k = 3.

5. Ищем min{ ai0 / ai1 } = min{ 1/8 ; 1/1 } = 1/8– этот минимум достигается при i = 1. Значит, r = 1первая строка – ведущая. (на рисунке помечена стрелкой)

Ведущий элементark = a13 = 8 (на рисунке выделен)

6. Заполняем новую симплекс-таблицу.

В столбец "текущий базис" вместо переменной у5 ставим переменную у3 .

В столбец "сi" ставим коэффициент переменной у3 в целевой функции.

Самая верхняя строка таблицы всегда остаётся неизменной.

Пересчитываем ведущую строку по формуле :

 

 

После этого пересчитываем остальные строки по формуле

 

 :

 

вторая строка (i = 2)

 

 

Пересчитываем и заполняем строку оценок:

 

D0 =  = 1 *  + 0 *  =  D1 =   c1 = 1 *  + 0 *   1 = 

D2 =   c2 = 1 *  + 0 *   1 =  D3 =   c3 = 1 * 1 + 0 * 0  1 = 0

D4 =   c4 = 1 *  + 0 *   1 = 

D5 =   c5 = 1 *  + 0 *   0 = D6 =   c6 = 1 * 0 + 0 * 1  0 = 0

 

После этого повторяем 4 этап до тех пор, пока не будет выполнен п.1 (все j ³ 0).

В нашем случае имеются j <  и наименьшая среди них 4 . Значит ведущим столбцом на данном шаге будет A4 (пометим его стрелкой).

Ищем min{ ai0 / ai4 } = min{ : ; : } = min{ ; } = – этот минимум достигается при i = 2. Значит, r = 2вторая строка – ведущая (на рисунке помечена стрелкой).

Таким образом, в новый текущий базис вместо переменной у6 надо ввести переменную у4 .

Пересчитываем все элементы новой симплекс-таблицы.

Пересчитываем ведущую строку (вторую):

 

 = :  =  =  = :  =  =

 = :  =  =  = 0 :  = 0

 = :  = 1  = – :  = –  = 1 :  =

 

Приведенные выше и ниже вычисления представлены в весьма подробном виде. Это сделано из тех соображений, что как опять таки показывает практика, даже не смотря на достаточно хорошее понимание и усвоение теоретического материала, ошибки зачастую возникают именно при выполнении элементарных арифметических операций. Не следует думать, что средняя школа осталась позади, и вы всё можете посчитать в уме. Поэтому всем студентам мы советуем не лениться и подробно расписывать все арифметические действия (особенно с дробями).#

Пересчитываем оставшуюся строку (первую):

 

 =  –  =  – =  =

 =  –  =  –  =  =

 =  –  =  –  = –  = –

 = 1 – 0   = 1  =  –  = 0

 =  –  =  +  =  =

 = 0 –  = –

 

Пересчитываем и заполняем строку оценок:

 

D0 =  = 1 *  + 1 *  =  =

D1 =   c1 = 1 *  + 1 *   1 =    =

D2 =   c2 = 1 *  + 1 *   1 =    =  =

D3 =   c3 = 1 * 1 + 1 * 0  1 = 0

D4 =   c4 = 1 * 0 + 1 * 1  1 = 0

D5 =   c5 = 1 *  + 1 *   0 =  =

D6 =  – c6 = 1   + 1   – 0 =

 

Повторяем 4-й этап. При проверке п. 1 видим, что все j ³ 0 . Следовательно, данный план {у3, у4} (в столбце "текущий базис") – оптимален. Больше пересчитывать симплекс-таблицу не нужно.

Решение задачи линейного программирования полностью содержится в последней симплекс-таблице.

Значения переменных находятся в столбце А0 возле соответствующих переменных. В нашем случае, мы видим, что у3 = , у4 =  . Переменные у1 и у2 не входят в базис, поэтому их значения будут равны нулю. Таким образом, вектор переменных будет выглядеть так: Y = .

Значение целевой функции – это значение оценки  . В нашем случае g =  = .

Значения двойственных переменных находятся в строке оценок возле искусственных переменных. В нашем случае это 5 и 6 , то есть х1 =  , х2 =  . Таким образом, вектор двойственных переменных будет выглядеть так:Х = .

Итак, мы получили решение прямой задачи (которая у нас была двойственной): Y =

и двойственной задачи к данной (которая у нас была прямой):

Х =

Значения целевых функций при этом будут совпадать:f = g =  .

Найдем цену игры:n =  =

Далее найдем коэффициенты смешанной стратегии

для первого игрока по формуле рi = :

Р =  = ,

для второго игрока по формуле qi = :

Q =  = .

Особо "продвинутые" студенты при нахождении решения задачи линейного программирования, чтобы не считать симплекс-метод вручную академическим способом, могут воспользоваться средствами MS Excel. Это гораздо быстрее и удобнее.#

Ответ: смешанная стратегия для первого игрока Р = ,

смешанная стратегия для второго игрока Q = ,

цена игры n =  .


Дата: 2019-07-31, просмотров: 199.