Конструирование П. - регулятора, оптимизирующего систему по интегральному квадратичному критерию
Регулятор состояния, который оптимизирует систему по критерию:
Определяется по соотношениям:
P=LR1(A,B,Q,R);
При этом Q=R=I
Т.к. матрица С. является инвертированной, для образования регулятора выхода нет необходимости конструировать наблюдатель состояния – недосягаемое состояние просто вычисляется по формуле .
Следовательно, регулятор выхода имеет вид
Конструирование компенсаторов заданий и измеряемых возмущений
Обозначивши через z заданное значение выхода y и припуская, что , получим
Приняв во внимание, что А=В
Если при компенсации возмущений и заданий учесть «стоимость» управления, записавши критерий в виде
,
то компенсаторы (оптимальные) определяются зависимостями
Значение выхода при действии возмущения f в системе без компенсаторов при z=0
а также с оптимальным компенсатором.
Конструирование регулятора с компенсатором взаимосвязей
Проверим, или регулятор действительно расцепляет систему, т.е. матрица передаточных функций является диагональной
Используя V как новый вход можно далее записать
Регулятор выхода можно записать в виде
Конструирование апериодического регулятора
Апериодический регулятор для дискретной системы может быть получен: из условия . Запишем
Конструирование децентрализованного регулятора
Используя форму Ассео, запишем:
Следовательно, получим
Для определения критерия
Конструирование надежного регулятора
Если матрица G моделирует отказы каналов измерения, то регулятор находится в виде
Берем s=0.04 При этом значении выполняются необходимые условия:
s>
Результат решения уравнения Ляпунова первого типа
Коэффициент передачи надежного регулятора
Поверим систему с регулятором на устойчивость
Следовательно, система является постоянной при любых отклонениях.
Конструирование блочно-иерархического регулятора
Воспользуемся регулятором состояния и проверим или можно создать последовательность регуляторов состояния.
; ; ; ;
Рисунок 15 – Иллюстрация монотонного уменьшения величины критерия
Рисунок 16 – Схема блочно – иерархического регулятора
Конструирование регулятора для билинейной модели
Билинейный регулятор определяется по следующей зависимости
Вводя все компоненты в уравнение, получаем:
Дата: 2019-07-30, просмотров: 193.