Выбор электродвигателя. Кинематический и силовой расчёты привода.
Выбор электродвигателя
Требуемая мощность электродвигателя:
P =3,5 кВт.
Pэд P . По ГОСТ 19523-81 выбираем обдуваемый электродвигатель единой серии 4А, стандартной мощности: Pэд = 4 кВт.
Частота вращения вала электродвигателя определяется по зависимости
nэд = nпр·uцил·uрем. Здесь uцил, uрем – передаточные числа цилиндрической и ремённой передач, рекомендуемые значения для зубчатой цилиндрической передачи 2,0…5, для ремённой 1,5…3,5.
nэд = 210·3,5·1,9=1396,5 об/мин.
Воспользовавшись рекомендациями [4, с. 333] найдём наиболее близкую частоту вращения стандартного двигателя. Выбрали двигатель типа 4А100L4, nэд=1430 об/мин.
Определение передаточных чисел привода
Общее передаточное число привода
uпр= 6,8.
По ГОСТ 2185-66 возьмём стандартные значения передаточных чисел (uцил=3,5; uрем=2)
uпр ст = uцил ст·uрем ст = 3,5·2 = 7.
По ГОСТ 2185-66 uпр ст =7,1
Отклонение стандартного значения 0передаточного числа от фактического значения передаточного числа не должно превышать 4%. В данном случаи
Определение частот вращения и крутящих моментов на валах
Частота вращения на входном (быстроходном) валу
n1 = 735 об/мин.
Частота вращения на выходном (тихоходном) валу
n2 = 215 об/мин.
Крутящий момент на приводном валу
Tпр = T2
Крутящий момент на ведущем шкиве ремённой передачи (на валу электродвигателя)
Tэд = 26,7 Н·м.
Крутящий момент на входном валу редуктора
T1 = 26,7∙0,95∙1,9=48,19 Н·м.
Крутящий момент на выходном валу редуктора
T2 = 48,19∙3,5∙0,97=163,6 Н·м.
Выбор материалов и определение допускаемых напряжений
По типу производства назначаем вид термообработки: для серийного производства – улучшение для колеса и закалка ТВЧ для шестерни (Токи Высокой Частоты).
Для изготовления колёс принимаем сталь 40Х, как наиболее распространённую в общем редукторостроении.
Шестерня: HRC1 = 45; sв = 1500 МПа; sт = 1300 Мпа.
Колесо: HВ2 = 250; sв = 850 МПа; sт = 550 Мпа.
Определение допускаемых контактных напряжений для шестерни
. Закалка ТВЧ
sH lim b 1 = 17· +200 = 17·45+200 =965 МПа (предел выносливости по контактным напряжениям).
SH 1 = 1,2 (коэффициент запаса безопасности).
NHE 1 =
= 60·735·1500·(2,23·10-4+13·0,4+0,63·0,4+0,33·0,2) = 326·106 (эквивалентное число циклов).
m=9 (показатель кривой усталости), так как HB>350.
NHO 1 = 30·(10 )2,4 = 30·(10·45)2,4 = 70·106 (базовое число циклов).
Так как NHE1>NHO1, то KHL 1 = 1 (коэффициент долговечности).
= 804 МПа.
Определение допускаемых контактных напряжений для колеса
Улучшение
sH lim b 2 = 2· +70 = 2·250+70 =570 МПа.
SH 2 = 1,1.
NHE 2 = = 93·106.
NHO 2 = 30·( )2,4 = 30·2502,4 = 17,1·106.
Так как NHE2>NHO2, то KHL 2 = =1.
=518 МПа.
Расчётное значение допускаемых контактных напряжений
[sH]р = [sH]min = 518 МПа.
Допускаемые контактные напряжения при перегрузке
[sH]max 2 = 2,8·sТ =2,8·550 =1540 МПа.
[sH]max 1 = 40·HRC =40·45 =1600 МПа.
Расчёт цилиндрической прямозубой передачи
Проверочный расчёт цилиндрической прямозубой передачи
Проверочный расчёт передачи проводим в соответствии с ГОСТ 21354-75.
Расчёт ремённой передачи
1. Размер сечения выбираем по рекомендации [1, с. 152] в зависимости от Tэд и nэд.
Tэд = 26,7 Н·м.
Принимаем клиновой ремень нормального сечения типа А.
2. Назначаем расчётный диаметр малого шкива dр1 min. По рекомендации [1, с. 151] для ремня сечения А имеем dр1 min = 90 мм.
Следует применять шкивы с большим, чем dр min диаметром. По ГОСТ 20889-75 – ГОСТ 20897-75 принимаем
dр1 = 100 мм.
3. Определяем расчётный диаметр большего шкива
dр2 = (1-e)·dр1·uрем.
e = 0,02 (коэффициент скольжения).
dр2 = (1-0,02)·100·2 = 196 мм.
Полученный диаметр округляем до стандартного ближайшего значения по ГОСТ 20897-75
dр2 = 200 мм.
Уточняем передаточное число
uрем = 2,04.
4. Определяем межосевое расстояние.
Минимальное межосевое расстояние
amin = 0,55·(dр1+dр2)+h.
h = 8 мм (высота профиля ремня для сечения А).
amin = 0,55·(100+200)+8 = 173 мм.
amax =2·(100+200) = 600 мм.
Для увеличения долговечности ремней принимают a > amin. Причём a назначается в зависимости от передаточного числа uрем и расчётного диаметра dр2. По рекомендации [1, с. 153] при uрем = 2 имеем 1,2.
a = 1,2·dр2 = 1,2·200 = 240 мм. Учитывая компоновку привода, принимаем окончательное межосевое расстояние a = 430 мм.
5. Определим длину ремня
.
V1 – скорость ремня, равная окружной скорости малого шкива.
V1 = 7,5 м/с.
Lmin = (375…250) мм.
L = 2·200+0,5·3,14·(100+200)+ = 884 мм.
L > Lmin, следовательно ремень будет иметь достаточную долговечность.
Полученную длину L округляют до стандартного ближайшего значения по ГОСТ 1284.3-80.
Принимаем L = 900 мм, что находится в рекомендуемом стандартном диапазоне для ремня типа А.Учитывая изменение межосевого расстояния (a=430 мм), полученное при компоновке общего вида привода к горизонтальному валу, получим окончательную длину ремня L = 1250 мм.
6. Уточняем межосевое расстояние передачи
a = 0,25·[L-D1+ ], где
D1 = 0,5·p·(dр1+dh2) = 0,5·3,14·(100+200) = 471 мм,
D2 = 0,25·(dр1-dр2)2 = 0,25·(200-100)2 = 2500 мм2.
a = 0,25·[1250-471+ ] = 390 мм.
Округляем полученное значение до ближайшего из стандартного ряда чисел a = 430 мм.
Принимаем угол обхвата на малом шкиве
.
a1 = 152° > [a1] = 120°.
Следовательно, угол обхвата на малом шкиве имеет достаточную величину.
7. Допускаемая мощность, которую передаёт ремень в заданных условиях эксплуатации
[P] = (P0·Ca·CL+10-4·DTи·n1) ·Cр.
Определим P0 – номинальную мощность, которую передаёт ремень в определённых условиях (a1 = 180°, u = 1, V = 10 м/с, длина ремня L0, спокойная нагрузка)
P0 = 1,3.
Значения коэффициентов Ca, CL, DTи, Cр, Cz
Ca = 0,95 (коэффициент, учитывающий влияние на тяговую способность угла обхвата).
CL = 0,95 (коэффициент, учитывающий реальную длину ремня).
DTи = 1,1 (поправка к моменту на быстроходном валу).
Cр = 0,95 (коэффициент, учитывающий режим работы передачи, в данном случаи для односменной работы).
[P] = (1,3·0,95·0,95+10-4·1,1·1430) ·0,95 = 1,19 кВт.
8. Необходимое количество ремней с учётом неравномерности нагрузки на ремни
.
Cz = 0,9 (коэффициент, учитывающий неравномерность распределения нагрузки между одновременно работающими ремнями).
z = 3,7.
Принимаем z = 4, что меньше zmax = 6. Следовательно, передача будет иметь допустимое число ремней.
9. Сила предварительного натяжения одного ремня
.
qm = 0,105 кг/м (масса одного метра длины ремня).
F0 = 121 Н.
10. Нагрузка на валы передачи
Fрем = 940 Н.
Угол между силой и линией центров передачи
Q = 10°.
Если Q 20°, то с достаточной степенью точности можно принимать, что Fрем направлена по линии центров передачи.
11. Проверяем частоту пробегов ремней на шкивах
nn = [nn] = 10 с-1.
nn = =8,3 с-1 < [nn].
12. Размеры шкивов клиноремённых передач регламентированы ГОСТ 20889-80 – ГОСТ20897-80, размеры профиля канавок регламентированы ГОСТ 20898-80.
Расчёт муфт
Для соединения отдельных узлов и механизмов в единую кинематическую цепь используются муфты, различные типы которых могут также обеспечить компенсацию смещений соединяемых валов (осевых, радиальных, угловых и комбинированных), улучшение динамических характеристик привода, ограничение передаваемого момента и прочее.
Наиболее распространённые муфты стандартизированы или нормализованы. Выбор муфт проводится в зависимости от диаметра вала и передаваемого крутящего момента.
1. Определяем расчётный момент муфты
Tрм = k·Tм, где Tм – номинальный момент на муфте (Tм = T2 = 163,6 Н·м), k – коэффициент режима работы.
Принимаем, что поломка муфты приводит к аварии машины без человеческих жертв.
k = k1·k2.
k1 = 1,2 (коэффициент безопасности; поломка муфты вызывает аварию машины).
k2 = 1,3 (коэффициент, учитывающий характер нагрузки; нагрузка с умеренными толчками).
k = 1,2·1,3 = 1,56.
Tрм = 1,56·163,6 = 255,2 Н·м.
2. Муфта выбирается по каталогу таким образом, чтобы выполнялось условие Tрм Tтабл.
Из упругих компенсирующих муфт наибольшее применение имеют следующие: муфта упругая втулочно-пальцевая типа МУВП по ГОСТ 21424-75 и муфта с резиновой звёздочкой по ГОСТ 14084-76.
По рекомендации [5, с. 303, с. 304] принимаем муфту упругую втулочно-пальцевую МУВП-40 по ГОСТ 21424-75, так как она обладает большими компенсирующими возможностями и принятая муфта имеет меньшие габариты (тип 2 – на короткие концы валов).
Tрм Tтабл = 400 Н·м.
3. Определяем силу Frм действующую со стороны муфты на вал, вследствие неизбежной несоосности соединяемых валов.
Frм = (0,2…0,3)·Ftм, где Ftм – окружная сила на муфте, Ftм = .
Для МУВП dр = D1 – диаметр окружности, на которой расположены центры пальцев.
dр = D1 = 242 мм.
Окружная сила на муфте
Ftм = = 1350 Н.
Следовательно, нагрузка от муфты на вал
Frм = (0,2…0,3)·1350 = (270…405) Н.
Принимаем Frм = 338 Н.
4. Проверяем возможность посадки муфты на вал редуктора. Определяем расчётный диаметр вала в месте посадки муфты
В данном случае Mгор = 0; Mверт = 0,5·Frм·f2.
f2 = 10+110 = 120 мм. (расстояние от стенки редуктора до муфты или длина полумуфты).
Mверт = 0,5·338·0,12 = 20,28 Н·м.
Суммарный изгибающий момент
M = 20,28 Н·м.
Эквивалентный момент
Mэкв = 165 Н·м.
Допускаемые напряжения [s] = 55…65 МПа, принимаем [s] = 55 МПа.
Расчётный диаметр вала в месте посадки муфты
dрм = 31,1 мм.
С учётом ослабления вала шпоночной канавкой имеем
dрм = 1,1·dрм = 1,1·31,1 = 34 мм.
Окончательно принимаем dрм =35 мм.
Таким образом, муфта проходит по посадочному диаметру вала и в дальнейших расчётах диаметр вала под муфту принимается dм = 35 мм.
Расчет валов
Исходные данные: крутящий момент на быстроходном (входном) валу редуктора T 1 = 48,19 Н∙м; крутящий момент на тихоходном (выходном) валу редуктора T 2 = 164 Н∙м; окружная сила в зубчатом зацеплении Ft 1 = Ft 2 = 1300 Н; радиальная сила в зубчатом зацеплении Fr 1 = Fr 2 = 473 Н; ширина шестерни b 1 = 60 мм; ширина колеса b 2 = 55 мм; делительный диаметр шестерни d 1 = 72 мм; делительный диаметр колеса d 2 = 252 мм; сила, действующая на вал, от натяжения ремней F рем = 940 Н; дополнительная сила, действующая со стороны муфты, на вал Fr м = 1350 Н.
Расчет вала на выносливость
Примем, что нормальные напряжения осей изгиба изменяется по симметричному циклу, а касательные осей кручения – по пульсирующему циклу. Определим коэффициент запаса прочности для опасного сечения вала и сравним с допускаемым значением запаса. Прочность соблюдается при
S > [ S ] = 1,5…2,0.
Коэффициенты запаса определяются по формулам:
,
где - коэффициенты запаса соответственно по нормальным и касательным напряжениям. Они определяются по формулам:
; ,
где - пределы выносливости материала вала; - амплитуда и среднее напряжение циклов нормальных и касательных напряжений. Для симметричного цикла нормальных напряжений = 0; - эффективные коэффициенты концентрации напряжений; - масштабные факторы; - коэффициенты качества поверхности, принимаем равным единице; - коэффициенты, учитывающие влияние асимметрии цикла.
Проверим на выносливость ведомый (тихоходный) вал, так как крутящий момент этого вала наибольший.
Материал вала – сталь 45, нормализация = 570МПа; = 246МПа;
= 142МПа.
Рассмотрим сечение под подшипникам на него действуют изгибающие и крутящие моменты. Концентрация напряжений вызвана напрессовкой подшипника.
Суммарный изгибающий момент:
.
Моменты сопротивления изгибу и кручению:
;
.
Коэффициенты понижения пределов выносливости:
= 1 (шлифование); .
Амплитуда нормальных напряжений:
.
Амплитуда и среднее напряжение цикла касательных напряжений:
.
Определяем коэффициенты запаса прочности:
;
;
.
В рассматриваемом случае условие S > [ S ] = 1,5…2,0 выполняется.
Выбор и расчет подшипников
Выбор шпонок
Шпонки призматические со скругленными торцами. Размеры сечений шпонок, пазов и длины шпонок определяем по ГОСТ 23360-78. материал шпонок – сталь 45 нормализация.
Определим напряжение смятия и условие прочности по формуле:
,
где Т – вращающий момент, передаваемый шпонкой; d – диаметр вала на котором установлена шпонка; b, h, l – соответственно ширина, высота и длина шпонки; t 1 – глубина паза вала под шпонку.
[ σ см ] = 100…120МПа – допускаемое напряжение смятия при стальной ступице. [ σ см ] = 50…70МПа – допускаемое напряжение смятия при чугунной ступице.
Ведущий (быстроходный) вал
Из двух шпонок – под шестерней и под шкивом.
- шпонка под шестерней:
d = 25мм; b x h = 8 x 7; t 1 = 4мм; l = 56мм (при длине ступицы
шестерни 60мм):
.
- шпонка под шкивом:
d = 20мм; b x h = 6 x 6; t 1 =3,5мм; l = 56мм
.
Ведомый (тихоходный) вал.
Из двух шпонок – под зубчатом колесом и под муфтой – более нагружена вторая (меньше диаметр вала и поэтому меньше размеры поперечного сечения шпонки). Поверим шпонку под муфтой: d = 35мм;
b x h = 10 x 8; t 1 = 5мм; l = 90мм (при длине ступицы муфты 96мм); момент Т2 = 164Н·м: .
Условие σ см < [ σ см ] выполняется во всех рассматриваемых случаях.
Список использованной литературы
1. Иванов М.Н. Детали машин. – М.: Высш. шк., 1984. – 336 с.
2. Курсовое проектирование деталей машин/В.Н. Кудрявцев, Ю.А. Державиц, И.К. Арефьев и др. – Л.: Машиностроение, 1984. – 400 с.
3. Дунаев П.Ф. Конструирование узлов и деталей машин: Учеб. пособие для вузов. – 3-е изд., перераб. и доп. – М.: Высш. школа, 1978. – 352 с.
4. Чернин И.М., Кузьмин А.В., Ицкович Г.М. Расчеты деталей машин. – Минск: Вышэйшая школа, 1978. – 472 с.
5. Детали машин. Атлас конструкций. Кол. Авторов по ред. д-ра техн. Наук Д.Н. Решетова. Изд. 3-е переработ. и доп. М., изд-во «Машиностроение», 1970, 360 стр.
6. Решетов Д.Н. Детали машин. – М.: Машиностроение, 1989. – 496 с.
Выбор электродвигателя. Кинематический и силовой расчёты привода.
Выбор электродвигателя
Требуемая мощность электродвигателя:
P =3,5 кВт.
Pэд P . По ГОСТ 19523-81 выбираем обдуваемый электродвигатель единой серии 4А, стандартной мощности: Pэд = 4 кВт.
Частота вращения вала электродвигателя определяется по зависимости
nэд = nпр·uцил·uрем. Здесь uцил, uрем – передаточные числа цилиндрической и ремённой передач, рекомендуемые значения для зубчатой цилиндрической передачи 2,0…5, для ремённой 1,5…3,5.
nэд = 210·3,5·1,9=1396,5 об/мин.
Воспользовавшись рекомендациями [4, с. 333] найдём наиболее близкую частоту вращения стандартного двигателя. Выбрали двигатель типа 4А100L4, nэд=1430 об/мин.
Дата: 2019-07-24, просмотров: 204.