Сопротивление металлических проводников увеличивается с повышением температуры и уменьшается с ее понижением. Каждому значению температуры соответствует определенное значение сопротивления проводника
2.7.
Закон Ома.
Ток прямо пропорционален напряжению и обратно пропорционален сопротивлению .
Закон Ома в дифференциальной форме.
Исходя из закона Ома (7.6.1), имеем:
А мы знаем, что или .Отсюда можно записать
это запись закона Ома в дифференциальной форме.
Классическая теория электропроводности металлов.
Друде предположил, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движутся совершено свободно, пробегая в среднем некоторый путь . Правда в отличие от молекул газа, пробег которых определяется соударениями молекул друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами, образующими кристаллическую решетку металла. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой. Полагая, что на электронный газ могут быть распространены результаты кинетической теории газов, оценку средней скорости теплового движения электронов можно произвести по формуле . Для комнатной температуры ( 300К) вычисление по этой формуле приводит к следующему значению: . При включении поля на хаотическое тепловое движение, происходящее, со скоростью , накладывается упорядоченное движение электронов с некоторой средней скоростью . Величину этой скорости легко оценить, исходя из формулы, связывающей плотность тока j с числом n носителей в единице объема, их зарядом е и средней скоростью :
Предельная допустимая техническими нормами плотность тока для медных проводов составляет около
Таким образом, даже при больших плотностях тока средняя скорость упорядоченного движения зарядов в раз меньше средней скорости теплового движения .
Работа электрического тока.
Закон Джоуля-Ленца.
При прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.
2.8.
Магнитное взаимодействие.
Магнитное взаимодействие — это взаимодействие упорядочение движущихся электрических зарядов.
Магнитное поле.
Магнитное поле - это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.
Сила Лоренца и сила Ампера.
Сила Лоренца – сила, действующая со стороны магнитного поля на движущийся со скоростью положительный заряд (здесь – скорость упорядоченного движения носителей положительного заряда). Модуль лоренцевой силы:
Сила Ампера- это сила, с которой магнитное поле действует на проводник с током.
Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индукции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.
Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.
Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.
Направление силы Ампера определяется по правилу левой руки.
Дата: 2019-07-24, просмотров: 218.