нанокристаллов соединений А2В6
В работе [12] были получены и исследованы спектры люминесценции квантовых точек CdSe при различных временах облучения на воздухе. Первоначально монослои выдерживали при давлении 10-5 Torr для стабилизации эталонной точки. При таких условиях наблюдались два максимума люминесценции: узкая экситонная полоса, локализованная у 580 нм и широкая полоса, обусловленная глубокими ловушками, локализованная вблизи 730 нм. Излучение на глубоких ловушках обусловлено излучением из состояний, закрепленных на середине запрещённой зоны и которые возникают из-за поверхностных дефектов или атомов непассивированной поверхности и будут обсуждаться дальше в тексте. Квантовый выход (КВ) сухих монослоёв квантовых точек был измерен с использованием интегральной сферы и был равен 0,4% [13]. Кстати, глубокоуровневая эмиссия представляет боле, чем половину от общей эмиссии пленок в вакууме и представляет менее 1% от общей эмиссии коллоидных растворов.
В камере с образцом, через которую пропускался комнатный воздух, интенсивность экситонной люминесценции в максимуме увеличивался в 20 раз относительно вакуума на протяжении первых 200 сек (КВ 8%) и затем падал приблизительно асимптотически до величины в 6 раз больше, чем в вакууме (КВ 2,4%).
Заметим, что глубокоуровневая эмиссия имеет намного меньшую долю в общей люминесценции, свидетельствуя о том, что увеличение КВ люминесценции происходит в основном из-за увеличения КВ экситонной эмиссии. Рост люминесценции происходит экспоненциально с постоянной времени 52 сек. Уменьшение люминесценции после 200 сек описывается двумя экспонентами с временными постоянными 560 и 2300 сек. Дальнейший анализ подгонки спектров люминесценции показал изменение как положения максимума, так и полуширины спектра излучения. Положение экситонного максимума сместилось в голубую область на ~16 нм (60 мэВ) с увеличением облучения на воздухе и все ещё продолжало смещаться после 5000 сек облучения. Это голубое смещение свидетельствует о том, что размер квантовых точек уменьшается вследствие фотохимии. Постепенное голубое смещение квантовых точек, облучённых на воздухе, преимущественно наблюдаемое при комнатной температуре в люминесценции одиночных квантовых точек является следствием фотоокисления поверхности [14].
В работе [12] определили, что активация люминесценции сильно зависит от атмосферных условий. Для установления того факта, что состав атмосферы играет существенную роль в активационном процессе был поставлен следующий эксперимент. Начиная от эталонной точки в вакууме (10-5 Torr), авторы пропускали через образец различные атмосферные газы, включая сухие Ar,N2,O2,CO2, а также азот и кислород, пропущенные через деионизованную воду, и проследили эволюцию спектров люминесценцию. Фотоактивация не наблюдалась при пропускании сухих газов, но для влажных N2 и O2 наблюдалась активация, приблизительно идентичная той, которая наблюдалась ранее. Общее увеличение интенсивности люминесценции при выдержке во влажном азоте и кислороде было одинаково. Этот результат показывает, что вода, присутствующая в воздухе, принимает участие в фотоактивационном процессе. Возможно определить зависимость фотоактивационного эффекта от относительной влажности газа.
Выдержка на воздухе без освещения не существенно активирует люминесценцию даже при повышенной температуре.
Данные в работе [12] свидетельствуют о том, что поверхностные адсорбенты, в частности молекулы вода, ответственны за активацию люминесценции. Модель, построенная на основании этих данных, показывает, что молекулы воды адсорбируются на поверхности квантовых точек в процессе облучения и пассивируют поверхностные состояния. Эти поверхностные состояния были ответственны за гашение экситонной эмиссии в квантовых точках, а также и за уменьшение люминесценции на дефектах в вакууме. В процессе начального времени облучения (10 сек) экситонная эмиссия увеличивается, а «дефектная» уменьшается последовательно с уменьшением плотности дефектов, так как концентрация поверхностных адсорбентов увеличивается.
В дополнение, авторы [12] установили, что уменьшение люминесценции при длительном облучении приводит к образованию окиси на поверхности. Окисление поверхности объёмного кристалла CdSe, как известно, является нестабильным и создает поверхностные дефекты. Фотоокисление квантовых точек может привести к созданию новых дефектов, которые гасят экситонную люминесценцию.
В итоге, установили, что сложную кинетику КВ люминесценции и полуширины полосы экситонной эмиссии, которая свидетельствует о конкуренции между двумя процессами: пассивацией поверхностных дефектов адсорбированными молекулами воды, что увеличивает интенсивность люминесценции, и фотоокислением квантовых точек, которое уменьшает эффективность люминесценции.
Дата: 2019-07-24, просмотров: 172.