Люминесцен ция нанокристаллов сульфида кадмия, внедренных в полимер
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В работах [10, 11] приведены исследования люминесценции наночастиц CdS, которые были получены путем быстрого смешивания при комнатной температуре водных растворов сульфата кадмия, содержащих стабилизатор с эквимолярными количествами сульфида натрия в небольшом объеме воды. В качестве стабилизаторов использовали желатин и поливиниловый спирт (ПВС).

Спектр испускания образцов CdS/полимер представляет собой широкую бесструктурную полосу с λ=630 нм (рис.1.4), т. е. на 40 нм сдвинут в более коротковолновую область по сравнении со спектром образцов CdS– ПВС.

Наличие в растворе избытка сульфид ионов CdS-поливиниловый спирт (ПВС) тушит люминесценцию [11], в то время как добавление ионов Сd2+ не оказывает заметного влияния на спектральные и кинетические особенности люминесценции. Указанное положение максимума спектра испускания люминесценции соответствует донорному уровню, находящемуся на 0,55 эВ ниже дна зоны проводимости.

Присутствие сульфид ионов тушит люминесценцию, а ионов Cd2+ – приводит к небольшому (~20%) ее разгоранию. Наблюдаемая люминесценция образцов CdS/полимер, по-видимому, также связана с наличием вакансий серы. Эффективное тушение люминесценции сульфид ионов указывает на то, что эти вакансии в основном локализованы на поверхности закрепленных на полимере частиц. Сдвиг донорного уровня на 0,12 эВ по сравнению с уровнем CdS-ПВС обусловлен, вероятно, поверхностными вакансиями серы с отрицательно заряженными новообменными группами сульфированного фторопласта – SO32-.

Взаимодействие этих же групп с дополнительно вводимыми ионами Cd2+ приводит к эффективной адсорбции последних на поверхности катионообменных полостей в полимере, что частично ослабляет связи VS - SO32-, тем самым, увеличивая число свободных вакансий серы и соответственно в интенсивности люминесценции.

Интегральный квантовый выход фотолюминесценции сухих образцов CdS/полимер составляет Ф=(5.5±1)·10-2. Увлажнение тех же образцов приводит к уменьшению квантового выхода в 3 – 5 раз, причем отмеченные изменения квантового выхода происходят обратимым образом. Авторы работы [3] также отметившие аналогичные изменения квантового выхода, связывали их с набуханием полимера в воде, которое приводит к увеличению числа контактов типа поверхность частицы CdS/полимер. Это уменьшает количество поверхностных центров излучательной рекомбинации и, следовательно, интенсивность фотолюминесценции.

Интегральный квантовый выход фотолюминесценции коллоида CdS – ПВС равен (1.0±0.1)·10-3, т.е. примерно на порядок ниже квантового выхода для влажных образцов CdS/полимер. Такое различие обусловлено более высокой концентрацией вакансий на поверхности частиц CdS в полимере, поскольку в последнем случае вакансии могут возникать, по-видимому, также и из-за взаимодействия поверхностных ионов кадмия с группами SO3- полимера вместо сульфид ионов.

В работе [11] показано, что кинетические кривые затухания фотолюминесценции образцов CdS/полимер неэкспоненциальны, причем суммарная продолжительность люминесценции достигает почти микросекунды, что соответствует эффективному времени жизни люминесценции 200 – 300 пс. В то же время для коллоидных образцов время жизни фотолюминесценции обычно составляет несколько наносекунд [5,6,7], хотя известны и случаи более длительной люминесценции [4]. Для сухих образцов CdS/полимер также наблюдалась длительная неэкспоненциальная люминесценция (рис.1.5), причем в интервале 150 – 400 нс после возбуждающего импульса характерное время жизни люминесценции оказалось равным 180 нс. Однако и для коллоидных образцов CdS - ПВС наряду с относительно короткоживущей люминесценцией (время жизни 2 – 5 нс, т.е. чуть больше длительности вспышки возбуждающего света) мы обнаружили долгоживущую фотолюминесценцию с эффективным временем (соответствующим краю кинетической кривой на рис.1.5) ~500 пс. Последняя величина превышает время жизни люминесценции образцов CdS/полимер. В целом кинетика фотолюминесценции исследованных образцов, особенно CdS – ПВС, имеет довольно сложный вид и существенно неэксноненциальна (см. рис.1.5).

Как показано в [5], время жизни τа фотогенерированных дырок в малой частице полупроводника n-типа сильно зависит от размеров частицы:

      (1.5)

где  – время жизни дырок в массивном полупроводнике, kэффективная константа скорости поверхностной реакции дырок, ro – радиус частицы.

Согласно [6], время жизни τ неравновесных дырок в массивном образце CdS составляет ~1 мкс, вследствие чего определяющий вклад в

 

I, отн. ед.
90
60
30
l, нм    
800
7000
500
600
3000
400

 

Рис.1.4. Спектры возбуждения и испускания люминесценции CdS/полимер (сплошная линия), CdS  - ПВС (штриховая линия) [11].

 
Iл,.отн.ед


4
3
2
1
100 нс
10000
1000
100
t, нс  
1000
500
0

 

Рис.1.5. Кинетические кривые спада фотолюминесценции (λ=670нм) коллоида CdS-ПВС, [CdS]=5·10-4моль/л (1), содержащего дополнительно [Na2S]=3·10-3(2), 3.5·10-4моль/л (3); (4)-сухого образца CdS-полимер (λ=630нм) [11]. наблюдаемую кинетику фотолюминесценции обсуждаемых образцов вносят реакции дырок на поверхности частиц полупроводника. Выше уже отмечалась существенная полидисперсность CdS/полимер и CdS – ПВС. Наличие в образце частиц, различающихся по размерам в десятки раз, приводит к столь же широкому набору времен жизни фотолюминесценции и к неэкспоненциальности ее кинетики. Наблюдаемое существенное отличие эффективных времен жизни фотолюминесценции образцов CdS/полимер и CdS – ПВС, возможно, обусловлено тем, что в случае полимерной матрицы крупные частицы полупроводника, образующиеся, как указывалось, за счет ассоциация катион обменных полостей, не являются на самом деле поликристаллами, как это имеет место в CdS, поскольку слагающие их кристаллиты с размерами 10 и 36 Å могут быть электрически изолированными за счет тонких прослоек полимера. В целом же определяющее влияние дисперсности полупроводника на его люминесцентные кинетические характеристики является несомненным.

Присутствие в растворе сульфида натрия приводит к уменьшению интенсивности люминесценции, но не влияет на вид кинетической кривой затухания свечения (рис.1.5). Как видно из рис.1.6, зависимость интенсивности фотолюминесценции образца CdS – ПВС от концентрации тушителя описывается уравнением ln ( Io / I )=[ Q ]/ Q, где Q – средняя по объему концентрация Na2S, содержащегося в образце.

Ранее [5,6] указывалось, что такие особенности тушения люминесценции могут возникать вследствие сильной адсорбции тушителя на поверхности частиц полупроводника. Действительно, полученная изотерма адсорбции сульфид ионов из водного раствора на поверхности частиц суспензии CdS указывает на то, что практически монослойное заполнение поверхности CdS сульфид ионами достигается уже при очень низких ~10-4 моль/л концентрациями сульфида натрия в растворе. При более высоких концентрациях Na2S в растворе количество адсорбированного сульфата натрия остается практически постоянным вплоть до [Na2S]=5х10-3 моль/л (при [Na2S]>5·10-3 моль/л наша методика не позволяет надежно измерить количество адсорбированного Na2S) и равно θ =(1.4±0.1)·10-3 моль/см2. В соответствии с [6]

. (1.6)

Это выражение позволяет из данных по тушению люминесценции вычислить эффективный диаметр частиц в коллоиде, d=10 Å. Эта величина практически совпадает с непосредственно измеренными диаметрами частиц. По-видимому, для более точного вычисления радиуса суспензированных частиц по данным люминесцентных измерений необходимо усреднить соответствующее (1.6) выражения по функции распределения частиц по размерам.

 


Дата: 2019-07-24, просмотров: 177.