Как было недавно обнаружено [6], трехмерные микрокристаллы полупроводниковых соединений могут быть выращены в объеме прозрачной диэлектрической матрицы силикатного стекла, и их образование может быть непосредственно детектировано по спектрам оптического поглощения. При этом оказалось, что средний размер микрокристаллов в матрице можно направленно менять в процессе выращивания в широких пределах от десятков до нескольких сотен ангстрем.
Синтез полупроводниковых соединений в диэлектрической матрице, кроме принципиально важной возможности получения кристаллов микроскопических размеров, имеет еще одно преимущество. Действительно, поскольку концентрации кристаллической фазы в матрице относительно невелика, оказывается возможной непосредственно записывать спектры поглощения кристаллов на относительно толстых образцах, получаемых механической полировкой [3]. Таким образом, подобные гетерогенные стекла оказываются новым, чрезвычайно удобным объектом для исследования размерных эффектов в полупроводниках.
В работе [6] рассматривается выращивание микрокристаллов в многокомпонентном силикатном стекле, в котором полупроводниковая фаза, концентрации приблизительно 1%, была растворена в течение синтеза. При вторичной термической обработке стеклянных образцов зародышеобразование и рост полупроводниковых микрокристаллов происходит в результате диффузионного фазового разложения пересыщенного твердого раствора.
На рис.1.1 показана экспериментальная зависимость среднего радиуса микрокристалла CdS как функция времени нагрева для ряда температур. Величина среднего радиуса микрокристалла для образца была определена методом малоуглового рентгеновского рассеяния в аппроксимации сферических частиц. Наблюдаемые зависимости описаны выражением, полученным в теоретической статье для диффузного фазового разложения пересыщенного твердого раствора в стадии переконденсации:
(1.4),
где - коэффициент диффузии, α – коэффициент, который определен граничным поверхностным натяжением, и t – время термообработки. Таким образом, выбирая надлежащие условия термической обработки (температура и время), можно варьировать размер микрокристаллов управляемым способом [7]. Было также показано, что
Рис. 1.1. Зависимость среднего радиуса микрокристалла CdS от времени нагрева t при различных температурах термообработки [7].
стадия роста переконденсации характеризуется стационарным (установившимся) состоянием распределения по размерам, которое не зависит от начальных условий, и для этого распределения было получено аналитическое выражение. Это выражение фактически описывает распределение по размерам полупроводниковых частиц, выращенных по рассматриваемой методике [6]. Этот факт дает возможность принять во внимание дисперсию размеров микрокристаллов при выполнении количественного анализа экспериментальных результатов, рассмотренную в этом параграфе.
Также наночастицы CdS получали [10, 11] путем быстрого смешивания при комнатной температуре водных растворов сульфата кадмия, содержащих стабилизатор с эквимолярными количествами сульфида натрия в небольшом объеме воды. В качестве стабилизаторов использовали желатин и поливиниловый спирт (ПВС). Величина смещения края полосы поглощения, как показали опыты, зависит от природы стабилизатора, его количества, а так же от содержания образовавшегося сульфида кадмия. У частиц, стабилизированных добавками ПВС, она невелика и составляет лишь 15-20 нм (рис.1.2 а, спектр 1) , тогда как при стабилизации желатином край полосы поглощения может сдвигаться на 60 нм (рис.1.2 а, спектр 3) и даже больше. Использование корреляционной зависимости между пороговой длиной волны поглощения и диаметром кристаллита позволило получить оценочные величина среднего размера частиц, характеризующихся спектрами 1 и 3 (рис.1.2 а). Они имеют значения, близкие к 5 нм и к 3 нм, соответственно. Необходимо отметить при этом, что наличие в спектре (рис.1.2) достаточно хорошо разрешенного экситонного пика при 360 нм может служить указанием на относительно узкое распределение частиц по размерам в растворах, стабилизированных желатином. При большей концентрации CdS этот пик становится менее выраженным, появляется дополнительное поглощение в области 370-450 нм и край полосы, характеризующийся максимумом при 360 нм, поскольку смещается в длинноволновую сторону (рис.1.2 а, спектр 2). Все это свидетельствует о том, что наряду с частицами, которым принадлежит спектр 3, присутствуют также более крупные образования.
Как видно из рис.1.2 б, на спектры поглощения коллоидных растворов CdS существенное влияние оказывает концентрация желатина. В растворах, содержащих 0.5 и 0.25% желатина, образуются наборы малых частиц с узким распределением по размерам (спектры 1 и 2). При переходе к более разбавленным растворам происходят изменения, подобные тем, которые наблюдаются при повышении концентрации CdS (спектры 3 и 4), а при стабилизации 0.01% желатином получаются частицы, которые, судя по краю полосы, расположенному около 500 нм, имеют диаметр, близкий к 5 нм (спектр 5). В противоположность рассмотренному случаю, варьирование концентрации ПВС от 0.1 до 5% практически не влияет на спектры поглощения; они во всех случаях остаются такими же, как спектр 1 на рис. 1.2,а.
|
|
Рис. 1.2. Изменение спектров поглощения растворов наночастиц сульфида кадмия в зависимости от концентрации CdS и природы стабилизатора (а), концентрации желатина (б): а: 1, 3 – концентрация CdS 5·10-4 моль/л; 2 – 1*10-3 моль/л (стабилизаторы: 1 – 1% поливиниловый спирт, 2,3 – 0.5% желатина; толщина слоя: 1,3 – 1 см; 2 – 0.5 см); б: 1 - концентрация желатина 0.5%; 2 – 0.25%; 3 – 0.1%; 4 – 0.05%; 5 – 0.01% (концентрация CdS 5·10-4 моль/л) [7].
В работе [6] была развита методика выращивания полупроводниковых микрокристаллов в стеклянной диэлектрической матрице. Эта методика позволяет варьировать размер выращенных микрокристаллов управляемым способом от нескольких десятков до тысяч ангстрем. Изучалась размерная зависимость спектров поглощения соединений А2В6. Наблюдался с уменьшением размера микрокристаллов значительный сдвиг в коротковолновую сторону линий экситона и фундаментального края поглощения. Это явление обусловлено квантово-размерным эффектом свободных носителей и энергетических спектров экситона в микрокристаллах.
Гетерофазные системы представляют интерес как новый класс объектов, которые могут использоваться для исследования квантово-размерного эффекта в полупроводниках [6]. Фактически микрокристалл в диэлектрической матрице можно трактовать, как трехмерную потенциальную яму для электронов, дырок, экситонов и т.д. Глубина ямы в таких системах может быть порядка нескольких электронвольт. Так как квазичастицы имеют ограниченное пространство, чтобы двигаться, их движение возможно только для определенных значений энергии; таким образом, их энергетический спектр квантован. Наблюдалось, что квантово-размерный эффект в таких системах проявляется как коротковолновое смещение спектров с уменьшением размеров микрокристаллов. Величина квантово-размерного смещения строго зависит от кулоновского взаимодействия электронов и дырок. Имеются два случая ограничений: первый – когда микрокристаллический размер а гораздо меньше чем радиус экситона аех (а<< aex) и сдвиг края поглощения обусловлен квантованием свободных носителей; второй – когда аех<< a и происходит квантование размера экситонов.
Авторы [6] подробно рассматривают первый случай.
Размерное квантование энергетического спектра носителей изучалось в стеклах, содержащих соединения А2В6, в которых радиус экситонов большой (аex=30Å для CdS). Рисунок 1.3 показывает спектры поглощения стекловидных образцов, отличающихся средним радиусом выращенных микрокристаллов CdS. Как можно заметить, экситонная структура исчезает, когда размер микрокристаллов сопоставим с радиусом экситона. При уменьшении размера появляется коротковолновый сдвиг края поглощения, а также колебательная структура в спектрах поглощения. Замечено [6], что ширина запрещенной зоны микрокристаллов CdS возрастает, благодаря квантово-размерному эффекту, до значения Eg=3.2 эВ.
Положение абсорбционных линий, обусловленных межзонными переходами на квантовые подуровни зоны проводимости как функция размера микрокристаллов, которая была рассчитана по выражению (1.2).
В некоторых случаях полимерные пленки были подвергнуты одноосному натяжению для изменения размера полимерных пор. Микроскопические наблюдения [2] показали, что CdS полимерные композиты имеют слоистую структуру. Имеется полимерный слой желтого цвета вблизи поверхности полимерной пленки, который содержит кластеры CdS и бесцветный полимерный слой в середине пленки, не содержащей CdS.
Типичная ширина полимерного слоя с CdS около 10 мкм, в то время, как вся ширина полимерного слоя около 100 мкм. Объемная концентрация была рассчитана для полимерного слоя CdS, так как образцы имели слоистую структуру. Величина концентрации CdS в пленках варьировалась от 0.5%
до 90%, а объемная концентрация CdS в полимерном слое с CdS- от 0.1 объемного процента до 50 объемных процентов. Дифрактограмма рентгеновских лучей показывает модель гексагонального CdS. Наблюдалось отражение в пределах 2q– 52˚, 44˚, 26.5˚ и 24˚. Уширение линии дифракционного сигнала при 44˚ было использовано для расчета .
Рис.1.3. Зависимость спектра поглощения микрокристалла CdS от размера: (1) -320 Ǻ ; (2) - 23 Ǻ ; (3) – 15 Ǻ; (4) – 12 Ǻ [6].
диаметра (размера) частиц CdS. При высокой концентрации (~10%) среднее значение расстояния между частицами было такого же порядка, как и их размер (диаметр). При максимальных концентрациях CdS возможно существование агрегатов кластеров.
В образцах, подвергнутых одноосному натяжению [1 0 0 ], отражение Х-лучей при 24˚ наблюдалось при незначительно меньшем угле, чем в макрокристаллическом материале (где оно локализовано при 24.8˚) и интенсивность этого отражения была повышена более чем на один порядок. Его уширение было также в 1.2-2 раза меньше, чем других отражений. Эти результаты можно, вероятно, объяснить, если предположить существование ориентации кластеров CdS, и что среднее значение размера частицы удлиняется в направлении растяжения, т.е. существует текстура нанокомпонетов. Такое изменение кластеров может быть объяснено аномальной деформацией пор в полимерных пленках в растянутой пленке и ростом ядра кластера с преимущественной ориентацией в направлении [1 0 0] в этих растянутых порах.
Оптические исследования были сделаны в ультрафиолетовой и видимых областях [2]. Нормированный коэффициент объемного поглощения CdS определяется из спектра поглощения, принимая во внимание расчет поглощения полимера. В случае прямых разрешенных оптических переходов между параболическими зонами, если зависимость ( k ( x ) hω )1/2 от hω (где k ( x ) – коэффициент поглощения) известна, можно определить ширину запрещенной зоны Eg. В этом случае Eg была определена для всех образцов с различными концентрациями CdS. При низких концентрациях (~0.8%) Eg была больше, чем в объеме. Этот эффект, вероятно, может быть причиной размерного квантования электронов (дырок) в малых кластерах. Для больших концентраций CdS (>10%) Eg меньше, чем в объеме CdS [2].
Спектр люминесценции CdS в полимере был исследован при комнатной температуре и температуре жидкого азота. Пик в спектре Емах сдвигается в сторону меньших энергий, когда объемная концентрация CdS возрастает. Для максимума величин концентраций (20-30 объемных процентов) пик люминесценции сдвигается до 0.7 эВ. Таким образом, как положение пика люминесценции, так и Eg , зависят от концентрации CdS матрицы. Полуширина спектра находится около 1 эв для малых концентраций и убывает до 0.5 эВ для больших. Интенсивность люминесценции убывает значительно при высоких концентрациях, и, следовательно, для этих композитов наблюдается концентрационное тушение люминесценции.
Убывание Eg может быть интерпретировано как влияние диполь дипольного электрического взаимодействия в кластерах. Расчет показывает, что при высоких концентрациях кластеров электрическое поле внутри кластера, обуславливающее это взаимодействие, может быть 0.5 * 107 В/см. Следовательно, уменьшение Eg, обусловленное эффектом Франца-Келдыша, может быть значительно больше в случае экспериментально наблюдаемого эффекта. Уменьшение интенсивности люминесценции при высоких концентрациях можно также интерпретировать как результат передачи электронно-дырочного возбуждения от одного кластера к другому, обусловленного электрическим взаимодействием.
Дата: 2019-07-24, просмотров: 188.