Электромагнит вывел изучение электричества в целом на новый уровень. Благодаря электромагниту стало возможно обнаруживать электрические токи по наличию магнитных полей, которые они создают, и измерять силу тока по силе его магнитного поля.
В 1820 году, после того как Эрстед объявил о том, что поток электрического тока сопровождается магнитным полем, немецкий физик Иоганн Кристоф Швейгер (1779–1857) предложил использовать магнитное поле в качестве средства измерения. Он поместил намагниченную иглу между двумя проволочными рамками. Когда электрический ток шел в одном направлении, игла отклонялась вправо, когда ток шел в обратном направлении, игла отклонялась влево. Поместив перед иглой шкалу, он смог определить величину отклонения и соответственно измерить силу тока. Это был первый гальванометр («прибор для измерения гальванического электричества» — такое название было предложено Ампером).
Первоначально гальванометр Швейгера состоял из зафиксированной проволочной рамки и подвижного магнита, но со временем выяснилось, что удобнее использовать зафиксированный магнит и подвижную рамку. Работа прибора, как и прежде, основана на принципе отклонения иглы, но игла прикреплена к проволочной рамке, а не к магниту. Устройство такого типа, удобное для практического применения, создал французский физик Жак Арсен Д'Арсонваль (1851–1940) в 1880 году. Оно стало известно как гальванометр Д'Арсонваля.
Гальванометры могут быть достаточно чувствительными, чтобы зафиксировать ток даже очень слабой силы. В 1903 году голландский физиолог Виллем Эйнтковен (1860–1927) изобрел струнный гальванометр. Он состоял из очень тонкого токопроводящего волокна, подвешенного (свободно плавающего) в магнитном поле. Даже самые ничтожные электрические токи, проходя через волокно, вызывали его отклонение. При помощи такого чрезвычайно чувствительного гальванометра мельчайшие изменения силы тока, порождаемые, например, сокращением мышц, можно зафиксировать и измерить. Таким образом можно исследовать изменения электрической диаграммы, вызванные сердцебиением, и как диагностическое средство струнный гальванометр пополнил арсенал современной медицины.
Гальванометры оказались настолько чувствительными, что в изначальном виде их можно было без риска использовать только при сравнительно слабой силе тока. Чтобы измерить, к примеру, полную силу обычного тока, применяемого в домах, гальванометр следует специально закоротить. Чтобы не позволить току течь по подвижной катушке в гальванометре поперек проволоки, которая ведет к катушке и от нее, разместили проводник с низкой сопротивляемостью. Такая короткая цепь с малым сопротивлением называется шунт. Это устройство впервые использовал в 1843 году английский физик Чарлз Уитстон (1802–1875).
Шунт и катушка подсоединены параллельно, и сила тока, который проходит через каждое из этих устройств, обратно пропорциональна их сопротивлениям. Если сопротивления известны, можно вычислить, какая доля силы тока пройдет через катушку, и только эта доля и повлияет на отклонение магнитной стрелки. Чувствительность отклонения может быть изменена, если увеличить или уменьшить сопротивление шунта таким образом, чтобы доля всей силы тока, проходящая через катушку, соответственно увеличилась или уменьшилась.
Регулируя ту долю силы тока, которая достигает катушки, так, чтобы отклоняющаяся магнитная стрелка оставалась на шкале, можно измерить силу тока в домашней сети или вообще ток любой силы. Шкала калибруется для измерения в амперах, а гальванометр при наличии такой шкалы называется амперметр.
Представим, что гальванометр поперечно соединен с какой-то частью цепи, — это создает короткое замыкание. Если гальванометр имеет очень высокое сопротивление, то по его короткой цепи будет течь совсем слабый ток — достаточно слабый, чтобы практически никак не влиять на оставшуюся часть цепи.
Этот слабый ток будет порождаться той же разностью потенциалов, что и гораздо более сильный ток, текущий в главной цепи, между концами которой находится гальванометр. Ток, пропущенный через гальванометр высокой сопротивляемости, будет меняться в зависимости от разности потенциалов. Шкала с подвижной магнитной стрелкой может быть калибрована в вольтах, при этом гальванометр становится вольтметром.
Если сила тока и разность потенциалов в какой-либо цепи или ее части измеряется амперметром или вольтметром, сопротивление этой цепи или ее измеряемого участка можно вычислить по закону Ома. Кроме того, гальванометр позволяет высчитывать неизвестное сопротивление, сравнивая его с уже известным.
Вообразим, что ток проходит через четыре сопротивления — R1, R2, R3, R 4, — расположенные в виде параллелограмма. Ток входит в точке А и может течь либо через точку В к точке D через R1 и R2 или через точку С к точке D через R3 и R4. Допустим, что точки В и С соединены то ко про водящим проводом, при этом гальванометр подключен к этому проводу и является частью цепи. Если в точке В напряжение будет больше, чем в точке С, ток будет течь в направлении от В к С и гальванометр зафиксирует наличие тока в одном направлении. Если же напряжение в С будет больше, чем в В, ток потечет от С к В и гальванометр отметит течение тока в обратном направлении. Но если напряжения в В и С одинаковы, ток течь не будет, а гальванометр будет показывать нуль.
Представим, что гальванометр показывает нуль. Какой можно из этого сделать вывод? Ток, который течет от точки А к точке В, должен без потерь пройти от В к D, не уклоняясь от гальванометра. Таким образом, сила тока на отрезке от А до В через R1 должна быть равна напряженности тока на отрезке от В до D через R2. Обе силы тока могут быть представлены как I1 . Подобное доказательство верно и для определения равенства сил тока, проходящего через R3 и R4. Это равенство может быть обозначено как I2 .
По закону Ома разность потенциалов равна напряженности тока, умноженной на сопротивление (Е = IR). Разностью потенциалов точек А и В соответственно является I1R1 , точек В и D — I1R2 , А и С — I2R2, С и D — I2R1.
Однако если стрелка гальванометра стоит на нуле, то разность потенциалов точек А и В та же, что и разность потенциалов А и С (иначе между точками В и С был бы ток и гальванометр не показывал бы нуль), а разность потенциалов между B и D равна разности потенциалов между С и D, следуя тому же доказательству. В условных обозначениях напряженности тока и сопротивления можно выразить эти равенства следующим образом:
I1R1 = I2R3 , (Уравнение 12.2)
I1R2 = I2R4 , (Уравнение 12.3)
Поделив уравнение 12.2 на уравнение 12.3, получим:
R1 /R2 = R3 /R4 ∙ (Уравнение 12.4)
Теперь предположим, что R1 — это неизвестное сопротивление, которое нам нужно измерить, a R2 — это сопротивление, которое нам известно. При этом R3 и R 4 являются переменными сопротивлениями, которые могут изменяться заданным образом.
Простое переменное сопротивление можно представить на примере проволоки, натянутой вдоль метровой линейки, со скользящим контактом, который способен по ней двигаться. Подвижный контакт представляет собой точку С в вышеописанном устройстве. Протяженность проволоки от одного конца линейки до другого — это отрезок AD. Часть проволоки от точки А до точки С обозначается как R3, от С до D — как R4 . Если провод однородный, то сопротивления R3 и R4 будут пропорциональны длине провода от А до С и от С до D соответственно и эти длины могут быть точно определены при помощи линейки. Абсолютные величины R3 и R4 установить нельзя, но отношение R3/R4 равно отношению AC/CD, и это именно то, что нам нужно.
Передвижение контакта по проводу приводит к увеличению разности потенциалов между А и С при увеличении расстояния между точками. В некоторой точке разность потенциалов между А и С станет равна разности потенциалов между А и D, а гальванометр при этом покажет нуль. В этой точке отношение R3/R4 определяется при помощи линейки, а отношение R1/R2 по уравнению 12.4 должно иметь то же значение.
Неизвестное сопротивление R1 может теперь легко быть найдено, если умножить уже известную величину R2 на отношение R3/R4. Уитстон использовал этот способ для измерения сопротивлений еще в 1843 году (хотя некоторые исследователи использовали сходные приемы и до этого ученого). Этот метод был назван мостом Уитстона.
Генераторы
Электромагнит, сколь бы полезен он ни был, сам по себе не решает проблемы поиска дешевых источников электричества. Если магнитное поле создается химическим элементом питания, то оно будет слишком дорого стоить, поэтому вопрос о применении больших мощностей в этом случае даже не возникает.
Однако метод, с помощью которого изготавливается электромагнит, натолкнул на мысль о возможности использования обратного явления. Если электрический ток производит магнитное поле, то почему уже существующее магнитное поле не может создать ток?
Майкл Фарадей мыслил именно таким образом, и в 1831 году он провел крайне важный опыт (после четырех неудачных попыток). Пятый эксперимент ученого заключался в следующем. Он намотал витки проволоки на часть железного кольца, добавил ключ, с помощью которого можно замыкать и размыкать цепь, и присоединил батарею. Теперь при нажимании на ключ и замыкании цепи ток шел по катушке и создавалось магнитное поле. Магнитные силовые линии были сконцентрированы в имеющем высокую проводимость железном кольце.
Затем Фарадей намотал другую проволоку на противоположный отрезок железного кольца и соединил катушку с гальванометром. Когда создавалось магнитное поле, оно могло создавать ток во второй катушке, и этот ток должен был фиксироваться гальванометром.
Опыт прошел совсем не так, как ожидалось. При замыкании цепи происходил кратковременный всплеск тока во второй проволоке — это показал гальванометр, стрелка которого быстро дернулась и вернулась к нулю. Стрелка оставалась на нуле все время, пока ключ был разомкнут. Существование магнитного поля и его концентрация в железном кольце были очевидны. Однако существование магнитного поля само по себе не производило электрический ток. Только когда Фарадей снова разомкнул цепь, было зафиксировано второе отклонение магнитной стрелки гальванометра — в противоположную сторону.
Ученый решил, что ток порождало не само по себе наличие силовых магнитных линий, а движение этих линий вокруг проволоки. Начала вырисовываться картина происходящего. Когда в первой проволочной катушке начинал течь ток, создавалось магнитное поле, а силовые линии увеличивались, чтобы заполнить все свободное пространство. Когда они захватывали проволоку второй катушки, начинал идти ток. Силовые линии быстро заполняли пространство, а затем отходили от второй проволоки, ток существовал в течение только одного мгновения. Когда цепь замыкалась и магнитное поле становилось постоянным, во второй катушке ток возникнуть уже не мог. Однако когда размыкалась первая цепь, существование магнитного поля прерывалось, и силовые линии начинали «падать» внутрь, создавая на мгновение ток в противоположном направлении.
Фарадей более четко уяснил себе (а также и аудитории, перед которой читалась лекция) это явление на более простом примере, поместив магнит в проволочную катушку, которая была соединена с гальванометром. Когда магнит устанавливали, стрелка гальванометра отклонялась в одну сторону, а когда его вытаскивали, она отклонялась в противоположном направлении. Пока магнит оставался в покое внутри катушки, на любой стадии его установки или вытаскивания никакого течения тока не наблюдалось. Однако в том случае, когда магнит был закреплен, а саму катушку переворачивали или опускали, ток снова начинал идти по проволоке. Не важно, двигалась ли проволока поперек силовых линий, или эти линии двигались поперек проволоки[107].
Фарадей, безусловно, использовал магнетизм для того, чтобы создать электрический ток, и изобрел таким образом электромагнитную индукцию. В США ученый Генри сделал то же открытие приблизительно в это же время, но работа Фарадея была опубликована первой.
Процесс возникновения тока по индукции можно легко представить, если рассмотреть пространство между полюсами магнита, где силовые линии проходят по прямой от северного полюса к южному, и предположить, что между этими полюсами двигается одинарная медная проволока. (Не имеет значения, постоянный это электромагнит или же электромагнит при пущенном токе.)
Если проволока неподвижна или двигается параллельно силовым линиям, индуктированный ток течь не будет. Если проволока движется в направлении, не параллельном силовым линиям, тем самым пересекая их, ток будет индуцироваться.
Величина разности потенциалов, которая приводит в движение индуктированный ток, зависит от количества силовых линий, пересекаемых в секунду, а эта скорость зависит от нескольких факторов. Во-первых, от скорости движущейся проволоки. Чем быстрее она движется в любом заданном направлении, не параллельном силовым линиям, тем большее количество этих линий она пересекает в течение секунды и тем больше разность потенциалов, приводящая к индукции тока.
Во-вторых, важен вопрос о направлении движения проволоки. Если проволока движется в направлении, перпендикулярном силовым линиям, то она в течение секунды пересекает некоторое количество этих линий. Однако при той же скорости движения, но в направлении, не совсем перпендикулярном силовым линиям, проволока пересекает меньшее число этих линий в единицу времени, и получающаяся при этом разность потенциалов меньше. Чем больше угол между направлением движения и перпендикуляром к силовым линиям, тем меньше разность потенциалов индуктированного тока. Так, при движении в направлении 90° к перпендикуляру это перемещение проволоки происходит фактически параллельно силовым линиям и тока не возникает.
Кроме того, если проволока скручена в витки и каждый виток пересекают силовые линии, разность потенциалов, приводящая в движение индуктированный ток, умножается в силе пропорционально отношению числа витков на единицу длины.
Направление индуктированного тока определяется при помощи правой руки, согласно системе, которую впервые предложил английский инженер-электрик Джон Эмброуз Флеминг (1849–1945), названной «правилом Флеминга», или правилом правой руки. Применение этого правила совсем несложно, если проволока движется перпендикулярно силовым линиям. Вытяните большой, указательный и средний пальцы так, чтобы каждый образовал прямой угол с двумя другими, причем большой палец направлен вверх, указательный — прямо, средний — налево. Указательный палец демонстрирует направление магнитных силовых линий от северного полюса к южному, большой палец показывает направление движения проволоки, а направление среднего пальца соответствует направлению течения тока по проволоке (от положительного полюса к отрицательному).
Спустя два месяца после открытия электромагнитной индукции Фарадей предпринял следующий шаг. Пока силовые магнитные линии пересекали электрический проводник, производился электрический ток, но как сделать этот процесс постоянным?
Ученый установил тонкий медный диск так, чтобы он мог поворачиваться на стержне. Когда диск поворачивался, его внешний край проходил между полюсами сильного магнита. По мере прохождения между этими полюсами он непрерывно пересекал магнитные линии, поэтому возникала разность потенциалов — разность, которая поддерживалась в течение всего времени, пока диск поворачивался. К диску были прикреплены две проволоки с подвижными контактами. Один контакт слегка задевал медное колесо по мере его вращения, второй касался стержня. Другие концы проволок соединялись с гальванометром.
Поскольку наибольший электрический потенциал возникал на внешнем крае, где диск вращался сильнее всего, пересекая большее число магнитных линий в единицу времени, между этим краем и неподвижным стержнем возникала максимальная разность потенциалов. Электрический ток шел по проводам, фиксируемый гальванометром, пока диск вращался. Фарадей производил постоянный ток, не используя химических реакций, и создал первый генератор электрического тока.
Важность этого устройства колоссальна, поскольку именно оно превращает энергию движения в электрическую энергию. Диск можно вращать, например, при помощи парового двигателя, горения угля или нефти (что гораздо дешевле, чем жечь цинк) или используя турбину, приводимую в движение потоком воды, — так водопады или реки могут быть приспособлены для производства электроэнергии. Для того чтобы приспособить генератор к практическим нуждам, потребовалось 50 лет, однако в 80-х годах XIX века уже в массовых объемах производилось дешевое электричество. Появился электрический свет, и стала возможна электрификация общества в целом.
Глава 13.
ПЕРЕМЕННЫЙ ТОК
Якорь
В современных генераторах вращающийся между двумя полюсами диск Фарадея заменен на катушки с медной проволокой, намотанной на железный цилиндр, который вращается между полюсами электромагнита. Вращающиеся катушки составляют якорь. Чтобы увидеть, что происходит, рассмотрим упрощенный случай: простую прямоугольную петлю из проволоки, которая поворачивается между северным (справа) и южным (слева) полюсами.
Представим, что такой прямоугольник расположен параллельно силовым линиям (движущимся справа налево) и начинает поворачиваться так, что проволока слева от него (проволока L) движется наверх, пересекая силовые линии, а проволока справа (проволока R) — вниз, тоже пересекая линии.
Начнем с проволоки L и вспомним правило правой руки. Направьте вверх большой палец так, чтобы он соответствовал движению проволоки L. Вытяните указательный палец налево, он будет соответствовать направлению южного полюса магнита. Средний палец обращен в вашу сторону, это и есть направление индуктированного тока в проволоке L.
Что же с проволокой R? Теперь большой палец нужно опустить вниз, в то время как указательный палец по-прежнему направлен влево. Средний палец обращен в противоположную от вас сторону, что соответствует направлению индуктированного тока в проволоке R. Индуктированный ток течет к вам по проволоке L и от вас по проволоке R, — именно это и происходит в прямоугольной петле.
Теперь представим, что проволоки L и R подсоединены каждая к отдельным токосъемникам (соответственно кольца А и В), каждое из которых отцентровано относительно стержня, служащего осью, вокруг которой вращается петля. Ток потечет от кольца В по проволоке R, затем по проволоке L к кольцу А. Если же один конец цепи соединен с одним из колец при помощи подвижного соединения, а второй конец цепи — таким же образом связан с другим кольцом, то ток, произведенный поворачивающимся якорем, будет проходить по всей цепи.
Однако рассмотрим прямоугольную петлю более подробно. Поскольку петля вращается, проволоки L и R не могут безгранично двигаться вверх и вниз. Они постоянно меняют направление. Когда проволока L движется вверх, она изгибается вправо и перемещается под небольшим углом к силовым линиям, поэтому сила индуктированного тока уменьшается. То же самое происходит и с проволокой R, которая при движении вниз изгибается влево и тоже перемещается под меньшим углом к силовым линиям.
Ток продолжает уменьшаться по мере поворота петли, пока петля не совершит поворот в 90°, так что проволока L оказывается наверху, а проволока R — внизу. Теперь проволока L движется вправо, параллельно силовым линиям, а проволока R — влево, так же параллельно линиям. Сила индуктированного тока падает до нуля. Петля продолжает вращение, и проволоки L и R пересекают силовые линии, соответственно вниз и вверх. Две проволоки поменялись местами, проволока L стала проволокой R, и наоборот.
Обе проволоки, несмотря на перемену мест, по-прежнему соединены с теми же токосъемниками. Это означает, что, когда якорь совершает одно полное вращение, ток половину этого времени течет от кольца В к кольцу А, а вторую половину — от кольца А к кольцу В. Это повторяется при следующем вращении и т. д.
Таким образом производится переменный ток, который бесконечно движется взад-вперед. Одно вращение петли производит одно движение тока назад и вперед, то есть один такт. Если петля поворачивается со скоростью 60 оборотов в секунду, то перед нами 60-тактовый переменный ток.
Сила тока не остается равномерной, даже пока ток течет в одном направлении. В течение одного вращения петли сила тока начинается с нуля, когда проволоки (верхняя и нижняя) движутся параллельно силовым линиям, и постепенно возрастает до максимума, когда проволоки (правая и левая) движутся перпендикулярно силовым линиям, а затем вновь плавно снижается к нулю, поскольку проволоки (нижняя и верхняя) вновь становятся параллельны силовым линиям.
Петля продолжает вращаться, ток меняет направление. Представим, что поток становится меньше нуля, — так и будет, если силу тока измерять положительными значениями, пока он течет в одном направлении, и отрицательными — в обратном. Следовательно, упав до нуля, интенсивность тока постепенно продолжает падать до минимума, на котором проволоки (левая и правая) движутся перпендикулярно силовым линиям, и снова плавно возрастает до нуля, когда проволоки (верхняя и нижняя) опять движутся параллельно силовым линиям. Так завершается одно вращение, и цикл начинается заново.
Вообразим для удобства, что максимальная сила тока — 1 ампер, тогда в первой четверти вращения интенсивность изменится с 0 на +1, во второй четверти — с +1 на 0, в третьей четверти — с 0 на –1, в четвертой — с –1 на 0. Если рассмотреть изменение силы тока со временем, то возникает плавно возрастающая и падающая, бесконечно повторяющаяся волна, которая в математике называется синусоида.
Генератор легко можно видоизменить для того, чтобы производить ток, движущийся по цепи только в одном направлении, это будет постоянный ток. Такой тип тока открыл Вольт, и именно этот ток всегда получается при использовании химических элементов питания.
Представим, что два конца прямоугольной петли присоединены к «полукольцам», которые примыкают друг к другу вокруг стержня-оси вращения, но не соприкасаются. Проволока L связана с одним полукольцом, а проволока R — с другим. Подвижный контакт одного конца цепи касается одного полукольца, подвижный контакт другого конца — второго полукольца.
В течение первой половины полного оборота якоря ток идет от полукольца А к полукольцу В. Вторая половина оборота сопровождается течением тока от полукольца В к полукольцу А. Однако каждый раз. когда якорь совершает полувращение, полукольца меняются местами. Если один подвижный контакт касается положительного полукольца, то отрицательное полукольцо становится на место, как только становится положительным, и покидает свое место, как только начинает получать отрицательное значение.
Другими словами, первый подвижный контакт в процессе вращения касается каждого полукольца, когда кольца находятся в положительной стадии своего цикла; второй контакт касается полуколец, только когда они отрицательны. Ток в якоре может менять направление, но по присоединенной цепи он течет постоянным.
Сила тока по-прежнему возрастает и падает от 0 до +1 и от 0 до –1 и обратно. Путем увеличения числа петель и разделения колец на маленькие части можно свести к минимуму эти вариации в силе тока и получить достаточно ровный постоянный ток.
Генератор переменного тока выглядит проще, чем генератор постоянного тока, но для того, чтобы переменный ток можно было применить, следовало преодолеть некоторые трудности. Эдисон, например, был ярым сторонником постоянного тока и в последние десятилетия XIX века усиленно боролся против использования переменного тока. Большим защитником использования переменного тока был американский изобретатель Джордж Вестингауз (1846–1914).
Рассматривая своеобразное соревнование между двумя типами тока, с первого взгляда можно решить, что постоянный ток «выигрывает». Следовательно, переменный ток кажется в свете этого бесполезным. В конце концов постоянный ток в результате «куда-то попадает» и, следовательно, полезен, а переменный «никуда не попадает» и, следовательно, полезным быть не может — по крайней мере, так кажется.
Однако это представление неверно.
Это заблуждение. Оно возникает при проведении ошибочной аналогии с водой, которая течет по трубе. Мы хотим, чтобы вода полилась для какой-то определенной цели — чтобы попить, помыться, охладить что-либо, полить растения, потушить пожар и т. д.
Но в стандартные бытовые приборы электричество никогда не «вытекает» из провода. Оно никуда не уходит ни при каких обстоятельствах. Постоянный ток может течь только в одном направлении, но он движется в рамках своей цепи и никуда не «приходит», так же как если бы он двигался взад-вперед.
Бывают случаи, когда постоянный ток, безусловно, необходим. При зарядке батарей, например, ток должен идти только водном направлении — противоположном тому, в котором он движется при разрядке батарей. С другой стороны, иногда не важно — постоянный ток или переменный.
К примеру, тостер или лампа накаливания работают только потому, что сопротивление раскаляет часть цепи (докрасна в тостере и добела — в лампочке). Эффект нагревания не зависит от направления тока, даже если оно меняется туда-сюда.
Таким же образом, вам будет жарко и вы вспотеете независимо от того, пробежали ли вы милю по прямой, по круговой дорожке или взад-вперед по комнате.
Более серьезная проблема с переменным током заключалась в том, что математический анализ его поведения более сложен, чем анализ цепей с постоянным током. Для разработки правильных цепей переменного тока нужно было сначала произвести полный математический анализ. Пока этого не произошло, таким цепям все время приписывалась низкая эффективность.
Дата: 2019-07-24, просмотров: 191.