Полное сопротивление, импеданс
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Ситуация, когда сила тока и разность потенциалов постоянно меняются, вызывает важные вопросы — например, как произвести простейшие вычисления касательно переменного тока. Если формула включает I (силу тока) или E  (разность потенциалов), то непонятно, какую величину использовать, поскольку переменный ток не имеет постоянного значения ни того ни другого, а имеет только значения, которые постоянно изменяются от нуля до какой-то максимальной величины (Imax и Emax) сначала в одном направлении, потом — в другом.

Можно высчитать эти свойства переменного тока по их производительности — это проще, чем определять их абсолютные числовые значения. Можно увидеть, к примеру, что переменный ток способен иметь ту же производительность (если измерять теплоотдачу или другие факторы), что и постоянный ток с определенными значениями I и E. Соответственно величины I и E  представляют собой эффективную силу тока  и эффективную разность потенциалов  переменного тока. Эффективные величины относятся к максимальным величинам следующим образом:

 

I = Imax/√2 = 0,7Imax, (Уравнение 13.1)

E = Emax/√2 = 0,7Emax, (Уравнение 13.2)

 

Можно предположить, что, найдя значения I и E для переменного тока, можно продолжить вычисления и сопротивления, представив его как отношение E/I  (сила тока, при заданной разности потенциалов) в соответствии с законом Ома. Однако здесь начинаются сложности. Цепь, которая при постоянном токе имеет низкое сопротивление, при переменном токе будет характеризоваться гораздо большим сопротивлением, поскольку при той же разности потенциалов будет получаться более слабый ток. Очевидно, переменный ток наделяет цепь неким дополнительным фактором сопротивления, отличным от обычного сопротивления вещества, из которого изготовлена цепь.

Чтобы понять, почему это происходит, вернемся к первым экспериментам Фарадея с электромагнитной индукцией (см. гл. 12). Там электрический ток пускался по одной катушке — возникало магнитное поле, расширяющиеся силовые линии пересекали вторую катушку, индуцируя разность потенциалов, соответственно создавался электрический ток во второй катушке. Когда ток в первой катушке выключали, сокращающиеся силовые линии угасающего магнитного поля снова пересекали вторую катушку, провоцируя разность потенциалов с другим знаком, и, таким образом, появлялся ток во второй катушке, идущий в обратном направлении.

Это понятно. Но следует отметить, что, когда ток начинает идти по катушке так, что силовые магнитные линии распространяются наружу, они пересекают не только другие соседние катушки, но и каждый из витков, которые создают магнитное поле. Затем, когда ток в катушке выключается, силовые линии исчезающего магнитного поля пересекают те самые катушки, в которых только что был ток. Поскольку ток начинает и прекращает течь в катушке, индуктированный ток возникает в ней же. Это называется самоиндукцей  или индуктивностью,  и обнаружил ее Генри в 1832 году. (На этот раз Генри обнародовал свое изобретение, опередив Фарадея, который самостоятельно пришел к тем же выводам; Фарадей, как вы помните, таким же образом предвосхитил Генри в открытии электромагнитной индукции.)

Почти одновременно с Генри и Фарадеем индуктивность изучал и русский физик Генрих Фридрих Эмилий Ленц (1804–1865). Он сделал важное обобщение: индуктированная разность потенциалов, возникающая в цепи, всегда стремится к противодействию создавшей ее силе. Это явление носит название «закон Ленца».

Следовательно, когда при замыкании цепи возникает ток, ожидается, что сила тока немедленно возрастет до предполагаемого уровня. Однако по мере возрастания она создает индуктированную разность потенциалов, которая меняет направление тока на противоположное. Это противодействие индуктивности заставляет первоначальный ток усиливаться в цепи до ожидаемого уровня сравнительно медленно.

Размыкание цепи приводит к прерыванию течения тока, при этом логично, что сила тока сразу упадет до нуля. Вместо этого выключение тока провоцирует индуктированное напряжение, которое заставляет ток продолжать течь. Интенсивность тока падает до нуля сравнительно медленно. Эту противоположную разность потенциалов, произведенную самоиндукцией, часто называют обратным напряжением.

При постоянном токе этот эффект противодействующей индуктивности не настолько важен, поскольку ощущается только при пуске и остановке тока, когда силовые линии двигаются наружу и внутрь. Пока ток постоянно течет в одном направлении, силовые линии не меняются, нет индуктированного тока, нет взаимодействия с первичным током.

Переменный же ток меняется постоянно, и для него это важно, поскольку магнитные силовые линии, все время двигаясь наружу и внутрь, постоянно пересекают катушки. Индуцируемая разность потенциалов здесь присутствует постоянно и постоянно противодействует основной разности потенциалов, сильно уменьшая ее. Так, если некая разность потенциалов создает сильный постоянный ток в определенной цепи, то переменный ток при ней же будет в большой степени нейтрализован индуктивностью и, следовательно, будет в такой же цепи гораздо слабее.

В честь ученого единица индуктивности получила название «генри».  Когда сила тока в цепи меняется в пропорции 1 ампер в секунду и в процессе индуцирует противоположную разность потенциалов мощностью 1 вольт, цепь имеет индуктивность в 1 генри. По этому определению 1 генри равен 1 вольту на ампер в секунду или вольт-секунду на ампер (вольт-с/ампер).

Сопротивление тока, произведенное самоиндукцией, зависит не только от значения индуктивности, как таковой, но также и от частоты переменного тока, поскольку с увеличением частоты изменение силы тока за заданное время (ампер в секунду) увеличивается. Соответственно чем больше поворотов делается в секунду, тем большее сопротивление тока создается при одной и той индуктивности.

Представим, что индуктивность обозначается как L,  а частота переменного тока как f. Сопротивление, произведенное этими факторами, называется индуктивным сопротивлением  и обозначается как XL.  Получается, что:

 

XL = 2πfL.  (Уравнение 13.3)

 

Если L  измерять в генри, то есть в вольт-секундах на ампер, а f — в обратных секундах, то размерностью XL должны быть вольт-секунда на ампер в секунду. Секунды сокращаются, и размерность становится просто вольт на ампер, то есть ом (см. гл. 11). Другими словами, единицы измерения индуктивного сопротивления, как и обычного, — омы.

И обычное сопротивление (R), и индуктивное сопротивление (XL)  влияют на силу тока, создающуюся в цепи переменного тока при заданной разности потенциалов; вместе они создают полное сопротивление (импеданс)  — Z Однако оно вычисляется не простым прибавлением индуктивного сопротивления к обычному, а по следующей формуле:

 

Z = √(R2 + XL2).  (Уравнение 13.4)

 

В цепи с переменным током именно импеданс играет ту же роль, что и обычное сопротивление в цепи с постоянным током. Другими словами, эквивалентом закона Ома для цепи с переменным током будет IZ  = E, или I I = EZ,  или Z = I/E.

Конденсаторы производят сопротивление несколько по-другому. Конденсатор в цепи постоянного тока играет роль воздушной пробки и при нормальных разностях потенциалов не дает току протекать. В цепи же с переменным током, однако, конденсатор не препятствует течению тока. Точнее, через воздушную пробку ток не движется, но он поочередно скапливает электроны сначала в одной пластине конденсатора, затем — в другой. Перемещаясь туда-обратно из одной пластины в другую, ток проходит через прибор, скажем электрическую лам» почку, — и та начинает светиться. Нить накала реагирует на прохождение по ней тока, а вовсе не на то, что где-то, может быть, есть другой участок цепи, по которой ток не движется.

Чем больше емкость конденсатора, тем сильнее мечущийся туда-сюда ток, потому что тем больше накапливающийся то в одной, то в другой пластине заряд. Можно объяснить это и по-другому: чем больше емкость конденсатора, тем меньше противодействие току, поскольку для электронов имеется больше места в пластине, и, следовательно, меньшим является взаимное отталкивание отрицательных зарядов, противодействующее току.

Это противодействие непрерывному току называется емкостным сопротивлением (XC),  и оно обратно пропорционально емкости (C) конденсатора. Емкостное сопротивление также обратно пропорционально частоте тока (f), поскольку чем быстрее ток меняет направление, тем менее вероятно, что та или иная пластина конденсатора переполнится электронами в течение половины цикла, и тем меньше взаимное отталкивание отрицательных зарядов, противодействующее току. (Другими словами, повышение частоты уменьшает емкостное сопротивление, хотя и повышает сопротивление индуктивное.) Обратное отношение можно выразить следующим образом:

 

XC = 1/2πfC. (Уравнение 13.5)

 

Емкость (C) измеряется в фарадах, то есть в кулонах на вольт, или в ампер-секундах на вольт. Поскольку размерность частоты (f) — обратные секунды, то размерность 2πfC —  ампер-секунды на вольты на секунды, то есть амперы на вольты. Размерность емкостного сопротивления (ХC)  обратна этой, то есть вольты на амперы, или омы. Таким образом, ясно, что емкостное сопротивление, как и индуктивное, является формой общего сопротивления в цепи.

И емкостное сопротивление, и индуктивное сопротивление уменьшают силу тока в цепи с переменным током при заданной разности потенциалов, если присутствуют в ней поодиночке. Однако делают они это противоположным образом.

В простейшем случае сила тока и разность потенциалов переменного тока обе увеличиваются и уменьшаются по синусоиде. Нулю они равняются одновременно; одновременно же одна из них достигает максимума, а вторая — минимума. Индуктивное же сопротивление, однако, приводит к тому, что сила тока начинает «запаздывать», достигая своего максимума (или минимума, или нуля) только через какое-то время после того, как его достигла разность потенциалов. С другой стороны, емкостное сопротивление приводит к тому, что сила тока начинает «спешить», увеличиваясь и падая на какое-то время раньше, чем разность потенциалов. В любом случае сила тока и разность потенциалов теряют синхронность, и энергия теряется.

Поэтому, если в цепи присутствуют и емкостное, и индуктивное сопротивления, действие одного оказывается противоположным действию другого. «Ускорение» емкостного сопротивления накладывается на «запаздывание» сопротивления индуктивного. Общее сопротивление в этом случае будет выражаться так:

 

Z = √(R2 + (XL – XC)2). (Уравнение 13.6)

 

Если цепь составлена таким образом, что емкостное сопротивление равно индуктивному сопротивлению, XLXC =  0 и Z = √R2 = R.  Общее сопротивление цепи с переменным током в этом случае не больше, чем обычное сопротивление аналогичной цепи с постоянным током. Такая цепь носит название «резонансный контур».  Обратите внимание, что импеданс никогда не может быть меньше сопротивления. Если емкостное сопротивление больше, чем индуктивное, то XL– Хс является отрицательной величиной, но его квадрат — величина положительная, и если взять квадратный корень от суммы, то окончательное значение Z будет больше, чем R.

Это только самое начало усложнений, которые привносит в электрические цепи переменный ток. Большую часть полного знания о цепях переменного тока получил в начале XX века немецко-американский инженер-электрик Чарльз Протеус Штайнмец (1865–1923), и только после этого стало возможным широкое использование переменного тока.

 

 

Трансформаторы

 

Еще до того как Штайнмец рационализировал использование переменного тока, и несмотря на огромные трудности, которые стояли на пути электриков в отсутствие этих знаний, а также несмотря на огромное сопротивление таких людей, как, например, Эдисон и Кельвин, борьба за применение переменного тока была выиграна. Причиной тому стало соображение, что переменный ток намного превосходил постоянный в отношении передачи его на большие расстояния.

Мощность электрического тока измеряется в ваттах и равняется разности потенциалов (в вольтах), умноженной на амперы силы тока. (Строго говоря, это так только в отсутствие сопротивления. Если присутствует индуктивное сопротивление, то мощность уменьшается на специальный фактор мощности.  Однако это уменьшение можно сократить или вообще устранить путем введения соответствующего емкостного сопротивления, поэтому нас этот вопрос беспокоить не должен.)

Это означает, что ток одной и той же мощности может порождаться различными сочетаниями вольтов и амперов. Например, через некое устройство может пропускаться I ампер при 120 вольтах, или 2 ампера при 60 вольтах, или 5 ампер при 24 вольтах, или 12 ампер при 10 вольтах. Мощность во всех случаях будет одной и той же — 120 ватт.

В некоторых случаях выгоднее, чтобы ток заданной мощности появлялся при большом количестве вольт и малом — ампер, в других — наоборот. В последнем случае низкая разность потенциалов уменьшает риск пробоя изоляции или получения короткого замыкания.

И остается уже упомянутая проблема передачи электроэнергии на большие расстояния. Большая часть преимуществ использования электроэнергии была бы потеряна, если бы ее можно было использовать только поблизости от генератора.

Поскольку если ток посылать по проводам на далекие расстояния, то на нагрев проводов уйдет столько энергии, что либо до адресата дойдет ее слишком мало, либо потери придется сокращать за счет утолщения проводов до такой степени, что они станут слишком дорогими.

Как известно, выделение тепла пропорционально квадрату силы тока. Следовательно, если снизить силу тока до очень малой величины, увеличивая в то же время разность потенциалов для того, чтобы электрическая мощность оставалась неизменной, то на нагрев проводов будет тратиться гораздо меньше энергии.

Естественно, маловероятно, что это сочетание высокого напряжения и малой силы тока будет годиться для применения в обычных электрических устройствах. Следовательно, нам нужна ситуация, где одна и та же мощность будет при очень большом напряжении в момент передачи и при малом — в момент использования.

В случае с постоянным током совершенно нерационально пытаться изменить разность потенциалов тока — то вверх, то вниз — для сиюминутных нужд. Однако что касается переменного тока, с ним это несложно проделать с помощью трансформатора  (устройства, трансформирующего (изменяющего) отношение силы тока к напряжению). В сущности, в 1831 году Фарадей изобрел именно трансформатор, когда, пытаясь получить индуцированный ток, принялся экспериментировать с железным кольцом и двумя катушками проволоки.

Фарадей обнаружил, что когда через одну катушку пропускают постоянный ток (который называется током в первичной обмотке),  то во второй катушке (во вторичной обмотке)  ток не возникает, кроме тех моментов, когда первичный ток только возникает или только заканчивается. Только тогда магнитные силовые линии просачиваются во вторичную обмотку. Однако если ток в первичной обмотке — переменный, то сила тока всегда то падает, то повышается.

И сила магнитного поля в железном кольце всегда то повышается, то падает. Силовые линии расширяются наружу и сжимаются внутрь снова и снова, а по мере того, как это происходит, они пересекают вторичную обмотку, производя переменный ток, который полностью отражает переменный ток в первичной обмотке.

Разность потенциалов индуцированного тока зависит от отношения количества витков во вторичной обмотке к количеству в первичной обмотке. Так, если ток в первичной обмотке имеет разность потенциалов в 120 вольт и если вторичная обмотка содержит в 10 раз больше витков проволоки, чем первичная, то индуцированный ток будет иметь разность потенциалов 1200 вольт. Это пример повышающего трансформатора.

Если производимый таким трансформатором индуцированный ток переходит в первичную обмотку другого трансформатора, вторичная обмотка которого содержит уже в 10 раз меньше витков, чем первичная, то производимый в ней ток вновь имеет 120 вольт. Этот второй трансформатор называется понижающим.

Этот индуцированный ток (если опустить потери на выделение тепла) должен иметь ту же мощность, что и изначальный ток. В противном случае получилось бы, что в процессе передачи появилась или пропала энергия, а этого быть не может. Это означает, что по мере увеличения разности потенциалов сила тока должна уменьшаться, и наоборот. Если ток в один ампер при 120 вольтах попадает в повышающий трансформатор, вторичная обмотка которого содержит в 100 раз больше витков, чем первичная, и индуцированный ток будет иметь разность потенциалов в 12 000 вольт и силу тока в 1/100 ампера.

И в первичной, и во вторичной обмотке сила тока будет равной 120 ваттам.

Если используется генератор переменного тока, то изменение напряжения посредством трансформатора не составляет никакого труда. Повышающий трансформатор в особенности помогает поднять разность потенциалов на огромную высоту, а силу тока свести к минимуму. Такой ток можно передавать на большие расстояния по не особенно толстым проводам, и потери на выделение тепла ввиду малой силы тока будут не очень велики. Мощность же тока благодаря высокой разности напряжений будет передаваться полностью.

Когда ток доходит до места назначения, понижающий трансформатор приведет разность его потенциалов к более низкой величине, а силу тока — к более высокой, и его можно будет использовать в бытовой и промышленной технике. Для работы некоторых устройств может требоваться более высокое или более низкое напряжение, к которому ток приводят правильно подобранные трансформаторы.

Передача переменного тока на дальние расстояния с применением высокого напряжения стала возможной вследствие работа хорвато-американского инженера-электрика Николы Теслы (1957–1943). Однако его опередил Джордж Вестингауз, выигравший в 1893 году право постройки гидроэлектростанции (электростанции, где сила падающей воды вращает турбины, которые поворачивают якоря, что производит электричество) на Ниагарском водопаде для производства и передачи переменного тока.

С тех пор переменный ток приобрел всеобщее распространение, и именно с тех пор электричество стало гибкой и легко приспосабливаемой формой полезной энергии.

 

 

Электромоторы

 

Благодаря изобретению генераторов механическая энергия может быть преобразована в электрическую, и стало возможным получение из горящего угля или падающей воды большого количества электроэнергии. Благодаря изобретению переменного тока и трансформаторов появилась возможность передавать эту электроэнергию на дальние расстояния и подводить к каждому дому или фабрике.

Однако, попав в дом или на фабрику, что должно делать там наше электричество? К счастью, к тому времени, как электричество научились в достаточном количестве производить и передавать, вопрос о его применении был уже решен.

Это решение основывалось на эффекте, обратном общеизвестному. Так в науке бывает часто. Если деформация кристалла приводит к появлению разности потенциалов, то применение разности потенциалов к противоположным сторонам кристалла должно будет его деформировать. Если электрический ток создает магнитное поле, то и магнитное поле можно заставить создавать электрический ток.

Следовательно, не стоит удивляться, что если механическая энергия может быть переведена в электрическую при движении проводника и пересечении им магнитных силовых линий, то и электрическая энергия может быть переведена в механическую при движении проводника поперек магнитных силовых линий.

Представим медную проволоку между полюсами магнита, северный полюс которого находится справа, а южный — слева. Если медную проволоку двигать вверх, то из открытого Флемингом правила правой руки мы знаем, что в ней будет индуцироваться ток, идущий по направлению к нам.

Теперь представим, что проволока остается посреди поля неподвижной, так что ток в ней не индуцируется. Представим, что мы пропускаем по ней ток из батареи и этот ток движется по направлению к нам. Проволока, по которой идет ток, теперь сама создает магнитное поле. Поскольку ток движется по направлению к нам, то силовые линии движутся по кругу против часовой стрелки.

Над проволокой эти круговые силовые линии движутся в том же направлении, что и прямые силовые линии, идущие от северного к южному полюсу магнита. Действие тех и других складывается так, что магнитный поток усиливается. Под проволокой же круговые силовые линии идут в направлении, противоположном силовым линиям магнита, так что здесь они частично нейтрализуют друг друга и плотность потока уменьшается.

Поскольку над проволокой магнитный поток имеет большую плотность, а под проволокой — малую, то проволоку толкает вниз естественное стремление силовых линий «сравняться». Если ток в проволоке движется по направлению от нас так, что его силовые линии направлены по часовой стрелке, то плотность магнитного потока будет больше внизу и проволоку будет толкать вверх.

Подводя итоги, представим магнит, силовые линии которого направлены справа налево:

если проволока без тока движется вверх, порождается ток, движущийся по направлению к нам;

если проволока без тока движется вниз, порождается ток, движущийся по направлению от нас;

если по проволоке идет ток, движущийся по направлению к нам, порождается движение вниз;

если по проволоке идет ток, движущийся по направлению от нас, порождается движение вверх.

В первых двух случаях ток порождается движением, и устройство является генератором. В последних двух движение создается из тока, и устройство называется мотором. (Оба устройства воплощают один и тот же принцип, но в одном случае он работает «в одну сторону», а в другом — «в другую».)

Отметим, что в генераторе ток, движущийся по направлению к нам, связан с движением вверх, а ток, движущийся от нас, — с движением вниз.

В моторе же ток, движущийся к нам, связан с движением вниз, а ток от нас — с движением вверх. Следовательно, в определении направлений силовых линий, тока и движения по отношению к мотору следует руководствоваться принципами, прямо противоположными тем, которыми мы руководствуемся по отношению к генератору.

Для генератора мы использовали правило правой руки, а поскольку наша левая рука зеркально отражает правую, то для определения различных направлений в случае с мотором мы пользуемся правилом левой руки  (большой, указательный и средний пальцы которой растопырены под прямыми углами друг к другу)Как и в случае применения правила правой руки, мы принимаем направление указательного пальца как направление силовых линий, то есть к южному полюсу. Средний палец в этом случае будет показывать направление тока, а большой — направление движения.

Теперь давайте перейдем к проволочной петле, находящейся между полюсами магнита. Если ей придать механическое вращение, то в петле порождается электрический ток. Следовательно, естественно ожидать, что если через петлю пропустить электрический ток из внешнего источника, то мы получим самопроизвольное механическое вращение. (Не вдаваясь в детали, скажу лишь, что такое механическое вращение достижимо при использовании как переменного, так и постоянного тока. Некоторые моторы могут работать и на том, и на другом.)

Следовательно, эти два устройства не могут быть полностью одинаковыми. Первое, используемое как генератор, будет преобразовывать тепловую энергию горящего угля в механическую энергию вращающегося якоря и из него уже получать электроэнергию. Полученная таким образом электроэнергия попадает во второе устройство — в мотор — и там преобразуется в механическую энергию вращающегося якоря. Конечно же можно сделать и большой генератор, который будет создавать достаточно энергии, чтобы от него могло работать множество небольших моторов.

Когда большие генераторы сделали возможным производство больших объемов электроэнергии, а трансформаторы сделали возможной ее транспортировку на большие расстояния, возникла необходимость в том, чтобы эта электроэнергия была подведена к миллионам моторов в домах и на фабриках[108].

Напрашивалось появление моторов, которые можно было бы использовать; однако этого ждали почти полвека, потому что первый мотор был сконструирован Генри в 1931 году.

Вращающиеся колеса с древнейших времен использовались человеком в качестве источника механической энергии, поскольку вращательное движение не только может приносить пользу само по себе, но и с легкостью может быть переведено в возвратно-поступательное, если использовать правильные механические соединения. На протяжении всей истории человечества колеса вращались мышечной силой человека и животных, падающей водой и ветром. Однако мышцы слабы и быстро утомляются, вода падает не везде, а на ветер никогда нельзя полагаться.

После изобретения паровой машины колеса стала вращать струя пара. Однако механизмы, требующиеся для вращения больших колес, были громоздкими, и их можно было размещать только на фабриках или на больших машинах, таких как локомотив или корабль. Поэтому их использование было рациональным только для масштабных работ. О создании маленьких паровых машин для домашнего использования речи не шло. Кроме того, процесс первоначального запуска паровой машины занимал много времени, поскольку для этого требовалось вскипятить большое количество воды.

С созданием мотора появилась возможность отделить колесо. Генератор как источник энергии уже не надо было размещать в доме или рядом с ним. Кроме того, электрический мотор включается и выключается одним щелчком выключателя.

Моторы оказались крайне универсальными, они могли вращать колеса любого размера и силы. Были разработаны большие моторы для автомобилей или промышленных станков и крошечные для пишущих машинок, бритв и зубных щеток.

Благодаря Фарадею и Генри (и помощи Теслы и Штейнмеца) жизнь населения промышленной части Земли наполнилась электрической техникой.

 

Глава 14.

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ

 

Уравнения Максвелла

 

К середине XIX пека связь между электричеством и магнетизмом была уже четко установлена и вовсю использовалась. Были изобретены генератор и мотор, и действие того и другого основывалось на взаимосвязи электричества и магнетизма.

Однако теория за практикой не успевала. Например, Фарадей, наверное самый великий изобретатель в области электричества, имел минимальные представления о математике, и поэтому его учение о силовых линиях было преподнесено в столь незамысловатой форме, где они описывались прямо-таки как резиновые жгуты[109].

В 60-х годах XIX века Максвелл, большой почитатель Фарадея, принялся за разработку математического анализа взаимосвязей электричества и магнетизма с целью придать более строгий вид нематематическим выкладкам Фарадея.

Чтобы описать, каким образом электрический ток незыблемо порождает магнитное поле, как магнит может порождать электрический ток, а оба эти явления — и электрический заряд, и магнитные полюса — порождают поля, состоящие из силовых линий, в 1864 году Максвелл разработал четыре сравнительно простых уравнения, известные с тех пор как уравнения Максвелла[110].  С их использованием стало возможно просчитать природу взаимоотношений электричества и магнетизма в разных условиях.

Для того чтобы уравнения были верны, кажется, невозможно рассматривать отдельно электрическое или магнитное поле. Оба они всегда присутствуют вместе, действуя под определенным углом друг к другу, поэтому можно говорить о существовании единого электромагнитного поля.

Далее, рассматривая возможность применения своих уравнений, Максвелл обнаружил, что изменяющееся электрическое поле должно производить изменяющееся магнитное поле, которое, в свою очередь, должно производить меняющееся электрическое поле, и т. д.; таким образом, они чередуются, и поле распространяется наружу во всех направлениях. Результатом этого является излучение, обладающее волновыми свойствами. Короче, Максвелл предсказал существование электромагнитных волн, имеющих частоту, равную той, с которой сжималось и расширялось электромагнитное поле.

Максвеллу удалось даже рассчитать скорость, с которой должна двигаться такая электромагнитная волна. Он сделал это, приняв во внимание отношение определенных значений в уравнениях, описывающих силы, действующие между электрическими зарядами и между магнитными полюсами. В результате он получил значение — около 300 000 километров в секунду — значение скорости света, и Максвелл не мог счесть это всего лишь совпадением. Электромагнитное излучение оказывалось не теоретическим понятием его уравнений, а реально существующим явлением. Свет и должен являться электромагнитным излучением[111].

Уравнения Максвелла послужили нескольким общим целям. Во-первых, для картины «вселенной полей» они стали тем же, чем законы Ньютона для картины «механической Вселенной». На самом деле Максвеллу его уравнения удались даже лучше, чем Ньютону его законы. Последние оказались лишь приблизительными, верными лишь для низких скоростей и коротких расстояний. Чтобы применяться более широко, им требовались уточнения, которые предоставила эйнштейновская теория относительности. Уравнения же Максвелла пережили все перемены, внесенные теорией относительности и квантовой теорией; в свете нового знания они оказались такими же верными, как и век назад, когда были выведены.

Во-вторых, уравнения Максвелла, в сочетании с позднейшим развитием квантовой теории, вроде бы наконец-то дали нам удовлетворительное объяснение природы света (именно этот вопрос занимает большую часть этой книги и является ее главной темой). Ранее (см. гл. 8) я писал, что, даже если приписать свету частицеобразные свойства, все равно у него остаются и волнообразные свойства, и задавал вопрос, что же может быть их причиной. Как мы видим теперь, эти волнообразные свойства являются вибрацией электромагнитного поля. Электрическая и магнитная составляющие этого поля направлены под правильным углом друг к другу, а вся волна в целом движется в направлении под правильным углом к обеим составляющим.

Максвеллу, придерживавшемуся теории эфира, казалось, что к вибрации электромагнитного поля приводили волнообразные искажения эфира. Однако уравнения Максвелла превзошли даже своего творца. Теория эфира ушла в прошлое, а электромагнитные волны остались, поскольку теперь вибрацию поля можно представлять как вибрационные изменения в геометрии пространства, что не требовало присутствия материи. Больше не требовалось, чтобы для создания световых волн что-либо колебалось.

Из четырех явлений, которые со времен Ньютона считались примерами воздействия на расстоянии, как минимум три оказались благодаря уравнениям Максвелла разными гранями одного и того же явления. Электричество, магнетизм и свет были объединены в единое электромагнитное поле. Только сила гравитации не была в него включена. Учитывая важную разницу между гравитацией и электромагнетизмом, Максвелл не стал пытаться включить в свои уравнения и гравитационное поле. После его смерти такие попытки предпринимались, в частности, это делал Эйнштейн во второй половине жизни.

Однако выводы Эйнштейна в общем не были приняты физиками, и вопрос о «единой теории полей» пока остается открытым.

Максвелл считал, что процессы, приводящие к электромагнитному излучению, могут служить и для порождения волн любой частоты, а не только световых и близких к ним ультрафиолетовых и инфракрасных. Он предсказал, что электромагнитное излучение, во всем похожее на свет, может существовать на всех частотах ниже и выше световых.

К сожалению, Максвелл не дожил до подтверждения своего прогноза, поскольку умер от рака в 1879 году достаточно рано — ему было 48 лет. Только 9 лет спустя, в 1888 году, немецкий физик Генрих Рудольф Герц (1857–1894) обнаружил электромагнитное излучение с очень низкой частотой — излучение, которое мы сейчас называем радиоволнами.  Это полностью совпало с предположениями Максвелла и было принято как подтверждение его уравнений. В 1895 году другой немецкий физик, Вильгельм Конрад Рентген (1845–1923), открыл электромагнитное излучение с очень высокой частотой, мы теперь называем это рентгеновскими лучами.

Последние 20 лет XIX столетия оказались также временем фундаментального прогресса в изучении электричества. Электрический ток пропускали через частичный вакуум, и электроны, вместо того чтобы оставаться скрытыми в металлической проводке или привязанными к перемещающимся атомам и группам атомов в растворе, проявили себя в качестве самостоятельных частиц.

Изучение новых частиц и излучений произвело фактическую революцию в физике и технологии электричества — столь яркую, что о ней говорят как о второй научной революции (первой принято называть ту, которая началась с Галилея).

И именно о второй научной революции и пойдет речь в III части этой книги.

 

 

Часть третья.

ЭЛЕКТРОН, ПРОТОН И НЕЙТРОН

 

Глава 1.

АТОМ

 

В первых частях книги я рассказывал о тех разделах физики, где можно было пренебречь внутренней структурой вещества. В частности, я говорил о гравитации. Любое небесное тело, обладающее такой же массой, как Земля, будет иметь такую же, как и у Земли, силу притяжения независимо от того, из чего это тело состоит. Более того, когда мы изучаем законы гравитационного взаимодействия тел, нам даже нужно пренебречь внутренней структурой этих тел. Например, кирпич — это единое целое, и перемещается он как единое целое, поэтому при изучении перемещения кирпича нам не важен его состав. Можно вывести очень важные законы электромагнитных волн, наблюдая за увеличением заряда на конце пробки или исследуя магнитное поле постоянного магнита, и для этого совсем не обязательно изучать внутреннюю структуру самого магнита. Даже тепло можно принять за некую невидимую жидкость[112], перетекающую от одного предмета к другому, и на основе этого выявить законы термодинамики.

Впрочем, если вы прочитали обе предыдущие части, думаю, для вас стало очевидно, что для более глубокого понимания феномена нам все же необходимо перейти на уровень микрочастиц.

Так, гораздо легче понять свойства газов, если представить газ как совокупность молекул (см. ч. I)[113].

В этом третьем томе я более подробно расскажу о внутренней структуре вещества и энергии и попытаюсь показать, как человек путем физических опытов открыл целый мир мельчайших частиц, который мы не можем увидеть, и как много это открытие дало тому миру, что мы видим вокруг.

 

 

Происхождение атомизма

 

Понятие атомизма  (так можно назвать теорию о том, что вся материя состоит из атомов) впервые ввели древние греки, основываясь в своих суждениях не на результатах опытов, а на философских выводах.

Наглядно подтвердить верность теории атомизма невозможно, так как для человека практически любое вещество является единым целым: мы ведь видим лист бумаги или каплю воды, а не частицы, из которых они состоят.

Но это еще ни о чем не говорит. Песок на пляже издалека тоже кажется единым целым, и только на очень близком расстоянии видны мелкие кристаллики, из которых он состоит. А ведь и бумага, и вода тоже могут состоять из частиц настолько малых, что их просто невозможно увидеть.

Проверить это можно следующим способом. Например, если бы мы не видели, что песок состоит из мелких частиц, то можно было бы взять в руку горсть песка, затем разделить ее на две равные части, затем каждую получившуюся часть разделить еще на две и т. д. В конце концов останется самая маленькая доля, состоящая из одной песчинки, которую уже нельзя будет разделить. То есть суть атомизма в том, что вещество нельзя делить до бесконечности, в какой-то момент останутся лишь неделимые (по крайней мере, неделимые тем же способом) частицы.

Что касается бумаги и воды, то микрочастицы, из которых состоят эти вещества, слишком малы для человеческого глаза. Как правило, человек не может увидеть или ощутить мельчайшие частицы большинства веществ. Как же тогда люди открыли само существования микрочастиц? Только лишь силой разума?

Все началось в IV веке до н.э. с парадоксов Зенона. Зенон говорил, что с помощью разума можно прийти к заключениям, которые пойдут вразрез со здравым смыслом. Выход в подобной ситуации один: надо искать ошибку либо в умозаключениях, либо в мировосприятии. Самый знаменитый парадокс Зенона называется «Ахиллес и черепаха»

Представьте, что древнегреческий герой Ахиллес, прославившийся своим умением быстро бегать, бежит в десять раз быстрее, чем черепаха. Черепаха получает фору в 100 метров, и забег начинается. Пока Ахиллес бежит 100 метров, черепаха пройдет 10 метров, когда Ахиллес пробежит эти 10 метров, черепаха продвинется еще на 1 метр, пока Ахиллес пробежит 1 метр, черепаха уйдет на 1/10 метра и т. д. То есть если мыслить так же, как Зенон, то получается, что Ахиллес никогда черепаху не догонит: та всегда будет впереди, пусть и с очень небольшим отрывом. Однако мы понимаем, что он не только ее догонит, но и перегонит.

Современная математика дает объяснение этому парадоксу. Дело в том, что расстояние, на которое черепаха опережает Ахиллеса, стремится к пределу. Внутри предела может быть сколь угодно метров, но их общая сумма вполне конечна. Так, в случае Ахиллеса и черепахи общая сумма равна 111 и 1/9 метра. То есть, как только Ахиллес пробежит 111 и 1/9 метра, он догонит черепаху и начнет ее обгонять.

Однако греки ничего не знали о математических пределах, поэтому им пришлось искать другие пути соотнесения аргументов Зенона с правдой жизни. Зенон, например, делил расстояние между черепахой и Ахиллесом на все более и более мелкие части, не отдавая себе отчета в том, что в конце концов останется столь малая часть, что ее уже нельзя будет разделить.

Возможно, именно так и устроено мироздание. Возможно, существуют какие-то мельчайшие неделимые частицы. Если принять идею о том, что нельзя делить до бесконечности, то парадоксы Зенона, основанные на бесконечном делении на все более и более мелкие части, просто исчезнут.

Возможно, подобные умозаключения и привели некоторых греческих философов к идее о том, что вся Вселенная состоит из невидимых микрочастиц. Наиболее знаменитый из этих философов — Демокрит, работавший над своей теорией приблизительно в 430 году до н.э. Он назвал эти мельчайшие частицы «атомос», от греческого «atomos» («невидимый»), откуда и произошло современное слово «атом».

Демокрит продолжил развивать свои идеи и пришел к ряду довольно современных выводов, однако все они были построены исключительно на умозаключениях. Он ничем не мог подтвердить свою теорию, просто «так должно быть».

Другие греческие философы того времени, напротив, говорили «такого быть не может» и приводили свои доводы. В целом большинство философов Греции отрицали теорию атомизма, и взгляды Демокрита были похоронены. Именно по этой причине работы Демокрита практически не переписывались, и ни одна из его многотомных работ не дошла до наших дней. Все знания о Демокрите мы почерпнули из работ других философов, но поскольку почти все они отвергали его теорию, то отзывались о его взглядах весьма пренебрежительно.

Тем не менее идеи Демокрита все же выжили. Эпикур (341–270 гг. до н.э.), начавший преподавать в Афинах в 306 году до н.э., включил атомизм Демокрита в собственную систему философских взглядов. Правда, хотя работа Эпикура и имела солидное влияние на других философов в течение нескольких последующих веков, его работы тоже не дошли до нашего времени.

К счастью, работы одного философа-«эпикурейца» все же сохранились. Римский поэт Лукреций (96–55 гг. до н.э.) написал длинное стихотворение «О природе вещей», где описал Вселенную с точки зрении атомизма. Сохранилась лишь одна копия этого произведения, которая в XV веке стала одним из первых печатных произведений античных классиков.

Таким образом, идеи эпикурейцев дошли до современной науки, и французский философ Пьер Гассенди (1592–1655) адаптировал эпикурейские взгляды Лукреция и поспособствовал популяризации доктрины атомизма.

Английский ученый Роберт Бойль (1627–1691) был одним из тех, на кого оказали сильное влияние идеи Гассенди, и именно он вывел атомизм на новую ступень развития, подкрепив идеи и домыслы опытами и наблюдениями.

 

 

Химические элементы

 

Р. Бойль изучал воздух и выяснил, что его можно сжимать и расширять (см. ч. I). Другими словами, можно менять объем воздуха, а его масса при этом остается неизменной. Если бы вещество было неделимо, тогда это было бы просто невозможно: когда мы растягиваем резиновый жгут, то его длина увеличивается, однако уменьшается его толщина, следовательно, объем не меняется.

Воздух больше похож на губку: ее можно сжать или, наоборот, растянуть — при этом сильно изменится объем губки, а вес останется неизменным. Пример с губкой можно объяснить наличием огромного количества пустот с воздухом внутри ее. Когда мы сжимаем губку, воздух выходит из этих полостей и губка уменьшается в размерах, а когда мы ее растягиваем, то воздух, наоборот, заходит внутрь.

Возможно, подобные полости есть в самом воздухе, и когда мы сжимаем или расширяем воздух, то сжимаются и расширяются именно эти полости. Можно представить, что воздух состоит из мириад мельчайших частиц, разделенных пустотой. Во время сжатия эти частицы подвигаются ближе друг к другу, а во время расширения, наоборот, удаляются друг от друга. Таким образом, объем будет меняться, а масса, которая зависит от количества частиц, а не от расстояния между ними, останется неизменной. Другие свойства газов также удобнее объяснять с атомистической точки зрения.

Конечно же с точки зрения атомизма можно рассматривать не только газы, но и твердые вещества и жидкости, так как последние путем нагревания легко превращаются в газ и пар. Таким образом, кипящая вода, да и вода при нормальной температуре превращается в пар — газ, плотность которого намного меньше плотности воды. С помощью конденсации пар снова можно превратить в воду. Объяснить это можно тем, что вода также состоит из атомов, но эти атомы расположены очень близко друг к другу, а поскольку для сжатия воды нужно давление гораздо большее, чем для сжатия газов, то, возможно, атомы еще и тесно между собой связаны. Когда жидкость испаряется, эти связи между молекулами разрушаются, а при конденсации они вновь восстанавливаются.

Но даже после столь подробных объяснений наука не приняла теорию атомизма, ведь она касалась микроскопических объектов, которые невозможно было обнаружить ни одним прибором того времени.

Окончательному же становлению атомизма способствовало появление все новых и новых химических доказательств. Рассказ об этом я начну с объяснения, что такое элемент.

Первыми о природе фундаментальной субстанции или субстанций (или элементов), из которых состоит все во Вселенной, заговорили древние греки. Их умозаключения не были основаны на реальных химических опытах, поэтому, по сути, являлись лишь догадками, но поскольку древние греки были людьми весьма умными, то и их догадки были весьма разумны.

Аристотель (384–322 гг. до н.э.) суммировал труды греческих философов в этой области, создав список четырех основных элементов мира: земля, вода, воздух и огонь, и пятый элемент, из которого состоят небеса, — эфир (см. ч. I). Если вместо названий стихий использовать родственные слова «твердый», «жидкий», «газообразный» и «энергия», то становится ясно, что в догадках действительно есть доля разумного.

Греческая идея четырех стихий просуществовала две тысячи лет, однако в 1600 году благодаря работам Галилео Галилея (1564–1642) ученые стали больше внимания уделять экспериментам, а не просто идеям. Элемент, или стихию, нужно путем экспериментов определить как нечто способное или неспособное делать что-либо, а не как просто что-то существующее, то есть дать определение, как мы говорим сейчас, с практической точки зрения.

В 1661 году Роберт Бойль написал книгу под названием «Химик-скептик», где он объяснил суть элемента. Если все мироздание действительно состоит из элементов, то каждый элемент должен являться простейшей, неделимой субстанцией, и тогда элемент нельзя создать из еще более мелких субстанций. Если же субстанцию можно разбить на еще более мелкие субстанции, то это уже не элемент.

Землю можно легко разделить на более простые субстанции, значит, земля — не элемент. Век спустя вода и воздух были разделены на еще более мелкие частицы, значит, вода и воздух — тоже не элементы. Что касается четвертой стихии, то химики пришли к выводу, что огонь — это вообще одна из форм энергии, значит, он не принадлежит к элементам.

После Бойля химики еще долгое время вообще не могли ничего утверждать об элементах, так как опасались, что совершенствующаяся техника экспериментов могла разделить казавшиеся ранее неделимыми субстанции.

Взять, к примеру, известь. В XVIII веке известь считалась элементом, так как ни одна химическая реакция не могла разложить ее на составляющие. Однако у химиков возникло предположение, что известь состоит из какого-то метала и кислорода. И лишь в 1808 году английскому химику Гемфри Дэви (1778–1829) удалось разложить известь и выявить новый элемент — кальций  (так по-латыни называется известь). Ученый применил для этого электрический ток — новую для того времени технологию.

Для более легкого обозначения химических элементов шведский химик Йене Якоб Берцелиус (1779–1848) ввел в 1814 году для каждого элемента свой химический символ.  Естественно, проще всего было использовать для этого первую и (как правило) вторую букву латинского названия элемента. Благодаря столь логичному подходу новые обозначения легко запоминаются и после некоторой тренировки не вызывают никаких затруднений при чтении.

В XIX веке химия ушла далеко вперед в изучении природы элементов, и уже в начале этого века ученые довольно точно знали, что является элементом, а что не элемент. О том, как им удалось этого достичь, я расскажу чуть позже, а пока привожу список субстанций, которые ныне считаются химическими элементами (табл. 1).

 

Таблица 1.

ЭЛЕМЕНТЫ И ИХ ОБОЗНАЧЕНИЯ

 

Актиний … Ас

Алюминий … Аl

Америций … Am

Сурьма … Sb

Аргон … Ar

Мышьяк … As

Астатин … At

Барий … Ba

Беркелий … Bk

Бериллий … Be

Висмут … Bi

Бор … В

Бром … Br

Кадмий … Cd

Кальций … Ca

Калифорний … Cf

Углерод … С

Церий … Се

Цезий … Cs

Хлор … CI

Хром … Cr

Кобальт … Co

Медь … Cu

Кюрий … Cm

Диспрозий … Dy

Эйнштейний … Es

Эрбий … Er

Европий … Eu

Фермий … Fm

Фтор … F

Франций … Fr

Гадолиний … Gd

Галлий … Ga

Германий … Ge

Золото … Au

Гафний … Hf

Гелий … He

Гольмий … Ho

Водород … H

Индий … In

Йод … I

Иридий … Ir

Железо … Fe

Криптон … Kr

Лантан … La

Лавренций … Lw

Свинец … Pb

Литий … Li

Лютеций … Lu

Магний … Mg

Марганец … Mn

Менделевий … Md

Ртуть … Hg

Молибден … Mo

Неодим … Nd

Неон … Ne

Нептуний … Np

Никель … Ni

Ниобий … Nb

Азот … N

Нобелий[114] … No

Осмий … Os

Кислород … 0

Палладий … Pd

Фосфор … P

Платина … Pt

Плутоний … Pu

Полоний … Po

Калий … К

Празеодиний … Pr

Прометий … Pm

Протактиний … Pa

Радий … Ra

Радон … Rn

Рений … Re

Родий … Rh

Рубидий … Rb

Рутений … Ru

Самарий … Sm

Скандий … Sc

Селен … Se

Кремний … Si

Серебро … Ag

Натрий … Na

Стронций … Sr

Сера … S

Тантал … Та

Технеций … Тс

Теллур … Те

Тербий … Tb

Таллий … Tl

Торий … Th

Тулий … Tm

Олово … Sn

Титан … Ti

Вольфрам … W

Уран … U

Ванадий … V

Ксенон … Xe

Иттербий … Yb

Иттрий … Y

Цинк … Zn

Цирконий … Zr

Рутений … Ru

 

Дата: 2019-07-24, просмотров: 190.