Задачи, связанные с поиском наибольшего и наименьшего значений функции, неспроста пользуются большой популярностью у составителей экзаменационных заданий: чтобы решить подобную задачу, приходится комбинировать приемы и методы из весьма различных разделов школьного курса математики. Первое, что приходит в голову при решении подобных задач, – исследовать функцию на наибольшее и наименьшее значения с помощью производной. Но у такого подхода есть недостаток: во многих задачах вступительных экзаменов в вузы с повышенными требованиями по математике этот привычный путь решения сопряжен со значительными техническими трудностями. В условиях конкурса этот недостаток особенно ощутим. Часто, однако, удается избавиться от громоздких выкладок, применяя понятия и навыки из других разделов школьного курса математики. Например, из тригонометрии.
Пример 1. Найти наибольшее и наименьшее значение выражения в области
[25].
Решение с помощью тригонометрической подстановки
Уравнение преобразуем так, чтобы в левой части получилась сумма квадратов: . Следовательно, каждое из выражений и по модулю не превосходит единицы и их можно рассматривать как синус и косинус некоторого угла. Положим . Выразим через одну величину :
.
Ответ: наибольшее значение равно , наименьшее значение равно .
Алгебраическое решение
Уравнение преобразуем так, чтобы в левой части получилась сумма квадратов: . Нам нужно найти наибольшее и наименьшее значения выражения в точках окружности , то есть окружности с центром в точке и радиусом . Пусть в точке с координатами выражение принимает наибольшее значение, тогда справедлива система
.
Так как ищем наибольшее значение выражения , то выбираем
.
.
Тогда наибольшее значение выражения равно
.
Аналогично находим, что наименьшее значение выражения равно
.
Ответ: наибольшее значение равно , наименьшее значение равно .
Пример 2. Найти наименьшее и наибольшее значения выражения , если [24].
Решение с помощью тригонометрической подстановки
Уравнение преобразуем так, чтобы в левой части получилась сумма квадратов:
.
Имеем, что сумма квадратов и равна единице, поэтому каждое из этих выражений по модулю не превосходит единицы и их можно рассматривать как синус и косинус некоторого угла. Вот почему можно положить . Выразим сумму квадратов через одну величину :
.
Ответ: наименьшее значение , наибольшее значение .
Алгебраическое решение
Иногда уравнения с параметрами возникают при решении задач, казалось бы, не имеющих к ним никакого отношения. Если требуется найти, например, наименьшее значение функции , ответ можно получить, если найти множество всех ее значений. Хотя это и более общая задача, но ее решение оказывается более простым. Причем число будет значением функции тогда и только тогда, когда уравнение имеет хотя бы один корень. Поэтому требуется найти все такие значения параметра и среди них выбрать наименьшее число. Это число и будет наименьшим значением функции [37]. Реализуем сказанное для решения данной задачи другим способом.
Перейдем к системе
,
то есть выясним, при каких значениях параметра система имеет решения. Умножим второе уравнение на и вычтем полученное уравнение из первого.
.
Получили однородное уравнение относительно переменных и . Проверкой устанавливается, что при система решений не имеет, поэтому уравнение можно разделить на
.
Чтобы это уравнение имело решения необходимо и достаточно, чтобы его дискриминант был неотрицателен.
.
Итак, данная система равносильна системе
.
Покажем, что при система имеет решения. Пусть - корень первого уравнения, тогда подставим во второе уравнение
.
Обратим внимание на то, что в промежутке только положительные числа, значит, полученное уравнение имеет решения. Соответственно, имеет решение и вся система. Промежуток и есть множество значений, принимаемых выражением при условии, что
.
В данном случае решение с помощью тригонометрической подстановки проще как в техническом, так и в идейном смысле. Не зная заранее идеи второго способа, трудно догадаться свести задачу о нахождении наибольшего и наименьшего значений выражения к решению системы с параметром.
Пример 3. Найти наибольшее и наименьшее значение выражения , если [16].
Как в предыдущем примере, в этом случае самый удобный подход – тригонометрическая подстановка. Решение системы, состоящей из двух неравенств и одного уравнения с параметром, довольно сложно.
Решение с помощью тригонометрической подстановки
Положим . Геометрический смысл такой замены: для каждой точки кольца определяются расстояние до начала координат и угол наклона вектора к положительному направлению оси абсцисс. Тогда неравенство будет выполнено при . Произведем замену в данном выражении
= .
Так как множество значений выражения – это отрезок , то множество значений выражения – отрезок .
Ответ: наименьшее значение , наибольшее значение 3.
Пример 4. Среди всех решений системы
[42].
Найдите такие, при которых выражение принимает наибольшее значение.
Перепишем систему в виде
Так как сумма квадратов чисел и рана единице, то каждое из них по абсолютной величине не превосходит единицы, поэтому их можно рассматривать как синус и косинус некоторого аргумента. Вот почему будет законна подстановка . Аналогично обосновывается введение замены . Тогда неравенство системы перепишется в виде
.
Запишем выражение в виде
.
Наибольшее значение выражения достигается тогда и только тогда, когда
Найдем
.
.
.
.
Ответ: .
Алгебраическое решение
Перепишем исходную систему в виде
.
Сложим равенства полученной системы
.
Сравним левые и правые части получившегося равенства и неравенства системы, получим
.
Рассмотрим квадрат выражения
.
Наибольшее значение выражения , а значит, наибольшее значение выражения имеет место тогда и только тогда, когда , то есть . Можно записать
.
Подставим полученное выражение в первое уравнение исходной системы и найдем
.
Так как необходимо найти наибольшее значение выражения и и имеют одинаковый знак, то выбираем
.
.
Так как , то .
.
Ответ: .
Здесь решение с помощью тригонометрической подстановки компактнее, быстрее приводит к результату. Единственный и важный момент, на который следует указать учащимся, является необходимость обоснования введения тригонометрической подстановки. Тот факт, что, например, и по модулю не превосходят единицы, можно проиллюстрировать графически. Уравнение задает окружность с центром в начале координат и радиуса 2.
Из рисунка видно, что и принимают значения из отрезка , тогда и изменяются на отрезке .
§5. Решение задач с параметрами
Решение задач с параметрами – один из труднейших разделов школьного курса математики. Здесь, кроме использования определенных алгоритмов решения уравнений или неравенств, приходится думать об удачной классификации, следить за тем, чтобы не пропустить много тонкостей. Уравнения и неравенства с параметрами – это тема, на которой проверяется подлинное понимание учеником материала. Поэтому, например, на вступительных экзаменах в вузы с повышенными требованиями по математике уравнения и неравенства с параметрами часто включают в варианты письменных работ.
Пример 1. Решите и исследуйте уравнение
[45].
Решение с помощью тригонометрической подстановки
Так как , то , поэтому положим . Уравнение примет вид
.
Если , то данное уравнение корней не имеет.
Пусть . Так как , то . При этих значениях имеем
.
То есть для того чтобы уравнение имело корни необходимо и достаточно, чтобы
.
Значит, если , то данное уравнение корней не имеет.
Пусть , то есть . Отсюда . Тогда данное уравнение имеет один корень
.
Если , то исходное уравнение имеет два корня
.
, .
Ответ: Если или , то данное уравнение корней не имеет.
Если , то уравнение имеет единственный корень .
Если , то уравнение имеет два корня .
Алгебраическое решение
.
Пусть . Выясним, при каких значениях выполняется неравенство , то есть решим неравенство
.
Пусть , тогда рассмотрим неравенство
.
Ответ: Если или , то данное уравнение корней не имеет.
Если , то уравнение имеет единственный корень .
Если , то уравнение имеет два корня .
В данном случае оба решения равноценны, можно решать любым способом. Зато уже в следующем примере решение с помощью тригонометрической подстановки проще.
Пример 2. При каких а неравенство
имеет решение [13].
Неравенство имеет решение при а большем наименьшего значения выражения .
Решение с помощью тригонометрической подстановки
Положим , тогда
, где .
Оценим выражение
.
Наименьшее значение выражения равно . Значит, при неравенство имеет решение.
Ответ: при неравенство имеет решение.
Алгебраическое решение
Если , то неравенство примет вид
.
Значит, при неравенство имеет решение.
Поделим числитель и знаменатель на , получим
.
Введем замену , тогда
.
Найдем наименьшее значение выражения .
.
То есть наименьшее значение выражения равно . Тогда наименьшее значение выражения , а значит наименьшее значение выражения равно .
Ответ: при неравенство имеет решение.
Для данного задания самый удобный метод решения – решение с помощью тригонометрической подстановки. Во втором случае возникает проблема с тем, чтобы найти наименьшее значение выражения . Если учащиеся умеют находить наименьшее значение функции с помощью производной, то выполнив все вычисления и проведя исследование, они справятся с задачей. Если подобное задание решать до изучения производной, то могут возникнуть трудности с определением наименьшего значения. В работе предложен прием сведения к уравнению с параметром, подробно описанный в предыдущем параграфе.
Глава 3
Дата: 2019-05-29, просмотров: 220.